Metamath Proof Explorer


Theorem llyidm

Description: Idempotence of the "locally" predicate, i.e. being "locally A " is a local property. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion llyidm Locally Locally A = Locally A

Proof

Step Hyp Ref Expression
1 llytop jLocally Locally A jTop
2 llyi jLocally Locally A xj yx ujuxyuj𝑡uLocally A
3 simprr3 jLocally Locally A xj yx ujuxyuj𝑡uLocally A j𝑡uLocally A
4 simprl jLocally Locally A xj yx ujuxyuj𝑡uLocally A uj
5 ssidd jLocally Locally A xj yx ujuxyuj𝑡uLocally A uu
6 1 3ad2ant1 jLocally Locally A xj yx jTop
7 6 adantr jLocally Locally A xj yx ujuxyuj𝑡uLocally A jTop
8 restopn2 jTopujuj𝑡uujuu
9 7 4 8 syl2anc jLocally Locally A xj yx ujuxyuj𝑡uLocally A uj𝑡uujuu
10 4 5 9 mpbir2and jLocally Locally A xj yx ujuxyuj𝑡uLocally A uj𝑡u
11 simprr2 jLocally Locally A xj yx ujuxyuj𝑡uLocally A yu
12 llyi j𝑡uLocally A uj𝑡u yu vj𝑡uvuyvj𝑡u𝑡vA
13 3 10 11 12 syl3anc jLocally Locally A xj yx ujuxyuj𝑡uLocally A vj𝑡uvuyvj𝑡u𝑡vA
14 restopn2 jTopujvj𝑡uvjvu
15 7 4 14 syl2anc jLocally Locally A xj yx ujuxyuj𝑡uLocally A vj𝑡uvjvu
16 simpl vjvuvj
17 15 16 syl6bi jLocally Locally A xj yx ujuxyuj𝑡uLocally A vj𝑡uvj
18 simprl jLocally Locally A xj yx ujuxyuj𝑡uLocally A vjvuyvj𝑡u𝑡vA vj
19 simprr1 jLocally Locally A xj yx ujuxyuj𝑡uLocally A vjvuyvj𝑡u𝑡vA vu
20 simprr1 jLocally Locally A xj yx ujuxyuj𝑡uLocally A ux
21 20 adantr jLocally Locally A xj yx ujuxyuj𝑡uLocally A vjvuyvj𝑡u𝑡vA ux
22 19 21 sstrd jLocally Locally A xj yx ujuxyuj𝑡uLocally A vjvuyvj𝑡u𝑡vA vx
23 velpw v𝒫xvx
24 22 23 sylibr jLocally Locally A xj yx ujuxyuj𝑡uLocally A vjvuyvj𝑡u𝑡vA v𝒫x
25 18 24 elind jLocally Locally A xj yx ujuxyuj𝑡uLocally A vjvuyvj𝑡u𝑡vA vj𝒫x
26 simprr2 jLocally Locally A xj yx ujuxyuj𝑡uLocally A vjvuyvj𝑡u𝑡vA yv
27 7 adantr jLocally Locally A xj yx ujuxyuj𝑡uLocally A vjvuyvj𝑡u𝑡vA jTop
28 simplrl jLocally Locally A xj yx ujuxyuj𝑡uLocally A vjvuyvj𝑡u𝑡vA uj
29 restabs jTopvuujj𝑡u𝑡v=j𝑡v
30 27 19 28 29 syl3anc jLocally Locally A xj yx ujuxyuj𝑡uLocally A vjvuyvj𝑡u𝑡vA j𝑡u𝑡v=j𝑡v
31 simprr3 jLocally Locally A xj yx ujuxyuj𝑡uLocally A vjvuyvj𝑡u𝑡vA j𝑡u𝑡vA
32 30 31 eqeltrrd jLocally Locally A xj yx ujuxyuj𝑡uLocally A vjvuyvj𝑡u𝑡vA j𝑡vA
33 25 26 32 jca32 jLocally Locally A xj yx ujuxyuj𝑡uLocally A vjvuyvj𝑡u𝑡vA vj𝒫xyvj𝑡vA
34 33 ex jLocally Locally A xj yx ujuxyuj𝑡uLocally A vjvuyvj𝑡u𝑡vAvj𝒫xyvj𝑡vA
35 17 34 syland jLocally Locally A xj yx ujuxyuj𝑡uLocally A vj𝑡uvuyvj𝑡u𝑡vAvj𝒫xyvj𝑡vA
36 35 reximdv2 jLocally Locally A xj yx ujuxyuj𝑡uLocally A vj𝑡uvuyvj𝑡u𝑡vAvj𝒫xyvj𝑡vA
37 13 36 mpd jLocally Locally A xj yx ujuxyuj𝑡uLocally A vj𝒫xyvj𝑡vA
38 2 37 rexlimddv jLocally Locally A xj yx vj𝒫xyvj𝑡vA
39 38 3expb jLocally Locally A xjyx vj𝒫xyvj𝑡vA
40 39 ralrimivva jLocally Locally A xjyxvj𝒫xyvj𝑡vA
41 islly jLocally A jTopxjyxvj𝒫xyvj𝑡vA
42 1 40 41 sylanbrc jLocally Locally A jLocally A
43 42 ssriv Locally Locally A Locally A
44 llyrest jLocally A xj j𝑡xLocally A
45 44 adantl jLocally A xj j𝑡xLocally A
46 llytop jLocally A jTop
47 46 ssriv Locally A Top
48 47 a1i Locally A Top
49 45 48 restlly Locally A Locally Locally A
50 49 mptru Locally A Locally Locally A
51 43 50 eqssi Locally Locally A = Locally A