Step |
Hyp |
Ref |
Expression |
1 |
|
lmhmfgsplit.z |
|
2 |
|
lmhmfgsplit.k |
|
3 |
|
lmhmfgsplit.u |
|
4 |
|
lmhmfgsplit.v |
|
5 |
|
lmhmlmod1 |
|
6 |
5
|
3ad2ant1 |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
7 8
|
reslmhm |
|
10 |
9
|
3ad2antl1 |
|
11 |
|
cnvresima |
|
12 |
2
|
eqcomi |
|
13 |
12
|
ineq1i |
|
14 |
|
incom |
|
15 |
11 13 14
|
3eqtri |
|
16 |
15
|
oveq2i |
|
17 |
|
vex |
|
18 |
|
inss1 |
|
19 |
|
ressabs |
|
20 |
17 18 19
|
mp2an |
|
21 |
3
|
oveq1i |
|
22 |
|
simpl1 |
|
23 |
|
cnvexg |
|
24 |
|
imaexg |
|
25 |
23 24
|
syl |
|
26 |
2 25
|
eqeltrid |
|
27 |
22 26
|
syl |
|
28 |
|
inss2 |
|
29 |
|
ressabs |
|
30 |
27 28 29
|
sylancl |
|
31 |
21 30
|
eqtrid |
|
32 |
20 31
|
eqtr4id |
|
33 |
16 32
|
eqtrid |
|
34 |
|
simpl2 |
|
35 |
6
|
adantr |
|
36 |
|
simpr |
|
37 |
2 1 7
|
lmhmkerlss |
|
38 |
22 37
|
syl |
|
39 |
7
|
lssincl |
|
40 |
35 36 38 39
|
syl3anc |
|
41 |
28
|
a1i |
|
42 |
|
eqid |
|
43 |
3 7 42
|
lsslss |
|
44 |
35 38 43
|
syl2anc |
|
45 |
40 41 44
|
mpbir2and |
|
46 |
|
eqid |
|
47 |
42 46
|
lnmlssfg |
|
48 |
34 45 47
|
syl2anc |
|
49 |
33 48
|
eqeltrd |
|
50 |
|
incom |
|
51 |
|
resss |
|
52 |
|
rnss |
|
53 |
51 52
|
ax-mp |
|
54 |
|
df-ss |
|
55 |
53 54
|
mpbi |
|
56 |
50 55
|
eqtr2i |
|
57 |
56
|
oveq2i |
|
58 |
4
|
oveq1i |
|
59 |
|
rnexg |
|
60 |
|
resexg |
|
61 |
|
rnexg |
|
62 |
60 61
|
syl |
|
63 |
|
ressress |
|
64 |
59 62 63
|
syl2anc |
|
65 |
58 64
|
eqtrid |
|
66 |
57 65
|
eqtr4id |
|
67 |
22 66
|
syl |
|
68 |
|
simpl3 |
|
69 |
|
lmhmrnlss |
|
70 |
10 69
|
syl |
|
71 |
53
|
a1i |
|
72 |
|
lmhmlmod2 |
|
73 |
22 72
|
syl |
|
74 |
|
lmhmrnlss |
|
75 |
22 74
|
syl |
|
76 |
|
eqid |
|
77 |
|
eqid |
|
78 |
4 76 77
|
lsslss |
|
79 |
73 75 78
|
syl2anc |
|
80 |
70 71 79
|
mpbir2and |
|
81 |
|
eqid |
|
82 |
77 81
|
lnmlssfg |
|
83 |
68 80 82
|
syl2anc |
|
84 |
67 83
|
eqeltrd |
|
85 |
|
eqid |
|
86 |
|
eqid |
|
87 |
|
eqid |
|
88 |
1 85 86 87
|
lmhmfgsplit |
|
89 |
10 49 84 88
|
syl3anc |
|
90 |
89
|
ralrimiva |
|
91 |
7
|
islnm |
|
92 |
6 90 91
|
sylanbrc |
|