Metamath Proof Explorer


Theorem lmhmlnmsplit

Description: If the kernel and range of a homomorphism of left modules are Noetherian, then so is the domain. (Contributed by Stefan O'Rear, 1-Jan-2015) (Revised by Stefan O'Rear, 12-Jun-2015)

Ref Expression
Hypotheses lmhmfgsplit.z 0 ˙ = 0 T
lmhmfgsplit.k K = F -1 0 ˙
lmhmfgsplit.u U = S 𝑠 K
lmhmfgsplit.v V = T 𝑠 ran F
Assertion lmhmlnmsplit F S LMHom T U LNoeM V LNoeM S LNoeM

Proof

Step Hyp Ref Expression
1 lmhmfgsplit.z 0 ˙ = 0 T
2 lmhmfgsplit.k K = F -1 0 ˙
3 lmhmfgsplit.u U = S 𝑠 K
4 lmhmfgsplit.v V = T 𝑠 ran F
5 lmhmlmod1 F S LMHom T S LMod
6 5 3ad2ant1 F S LMHom T U LNoeM V LNoeM S LMod
7 eqid LSubSp S = LSubSp S
8 eqid S 𝑠 a = S 𝑠 a
9 7 8 reslmhm F S LMHom T a LSubSp S F a S 𝑠 a LMHom T
10 9 3ad2antl1 F S LMHom T U LNoeM V LNoeM a LSubSp S F a S 𝑠 a LMHom T
11 cnvresima F a -1 0 ˙ = F -1 0 ˙ a
12 2 eqcomi F -1 0 ˙ = K
13 12 ineq1i F -1 0 ˙ a = K a
14 incom K a = a K
15 11 13 14 3eqtri F a -1 0 ˙ = a K
16 15 oveq2i S 𝑠 a 𝑠 F a -1 0 ˙ = S 𝑠 a 𝑠 a K
17 vex a V
18 inss1 a K a
19 ressabs a V a K a S 𝑠 a 𝑠 a K = S 𝑠 a K
20 17 18 19 mp2an S 𝑠 a 𝑠 a K = S 𝑠 a K
21 3 oveq1i U 𝑠 a K = S 𝑠 K 𝑠 a K
22 simpl1 F S LMHom T U LNoeM V LNoeM a LSubSp S F S LMHom T
23 cnvexg F S LMHom T F -1 V
24 imaexg F -1 V F -1 0 ˙ V
25 23 24 syl F S LMHom T F -1 0 ˙ V
26 2 25 eqeltrid F S LMHom T K V
27 22 26 syl F S LMHom T U LNoeM V LNoeM a LSubSp S K V
28 inss2 a K K
29 ressabs K V a K K S 𝑠 K 𝑠 a K = S 𝑠 a K
30 27 28 29 sylancl F S LMHom T U LNoeM V LNoeM a LSubSp S S 𝑠 K 𝑠 a K = S 𝑠 a K
31 21 30 eqtrid F S LMHom T U LNoeM V LNoeM a LSubSp S U 𝑠 a K = S 𝑠 a K
32 20 31 eqtr4id F S LMHom T U LNoeM V LNoeM a LSubSp S S 𝑠 a 𝑠 a K = U 𝑠 a K
33 16 32 eqtrid F S LMHom T U LNoeM V LNoeM a LSubSp S S 𝑠 a 𝑠 F a -1 0 ˙ = U 𝑠 a K
34 simpl2 F S LMHom T U LNoeM V LNoeM a LSubSp S U LNoeM
35 6 adantr F S LMHom T U LNoeM V LNoeM a LSubSp S S LMod
36 simpr F S LMHom T U LNoeM V LNoeM a LSubSp S a LSubSp S
37 2 1 7 lmhmkerlss F S LMHom T K LSubSp S
38 22 37 syl F S LMHom T U LNoeM V LNoeM a LSubSp S K LSubSp S
39 7 lssincl S LMod a LSubSp S K LSubSp S a K LSubSp S
40 35 36 38 39 syl3anc F S LMHom T U LNoeM V LNoeM a LSubSp S a K LSubSp S
41 28 a1i F S LMHom T U LNoeM V LNoeM a LSubSp S a K K
42 eqid LSubSp U = LSubSp U
43 3 7 42 lsslss S LMod K LSubSp S a K LSubSp U a K LSubSp S a K K
44 35 38 43 syl2anc F S LMHom T U LNoeM V LNoeM a LSubSp S a K LSubSp U a K LSubSp S a K K
45 40 41 44 mpbir2and F S LMHom T U LNoeM V LNoeM a LSubSp S a K LSubSp U
46 eqid U 𝑠 a K = U 𝑠 a K
47 42 46 lnmlssfg U LNoeM a K LSubSp U U 𝑠 a K LFinGen
48 34 45 47 syl2anc F S LMHom T U LNoeM V LNoeM a LSubSp S U 𝑠 a K LFinGen
49 33 48 eqeltrd F S LMHom T U LNoeM V LNoeM a LSubSp S S 𝑠 a 𝑠 F a -1 0 ˙ LFinGen
50 incom ran F ran F a = ran F a ran F
51 resss F a F
52 rnss F a F ran F a ran F
53 51 52 ax-mp ran F a ran F
54 df-ss ran F a ran F ran F a ran F = ran F a
55 53 54 mpbi ran F a ran F = ran F a
56 50 55 eqtr2i ran F a = ran F ran F a
57 56 oveq2i T 𝑠 ran F a = T 𝑠 ran F ran F a
58 4 oveq1i V 𝑠 ran F a = T 𝑠 ran F 𝑠 ran F a
59 rnexg F S LMHom T ran F V
60 resexg F S LMHom T F a V
61 rnexg F a V ran F a V
62 60 61 syl F S LMHom T ran F a V
63 ressress ran F V ran F a V T 𝑠 ran F 𝑠 ran F a = T 𝑠 ran F ran F a
64 59 62 63 syl2anc F S LMHom T T 𝑠 ran F 𝑠 ran F a = T 𝑠 ran F ran F a
65 58 64 eqtrid F S LMHom T V 𝑠 ran F a = T 𝑠 ran F ran F a
66 57 65 eqtr4id F S LMHom T T 𝑠 ran F a = V 𝑠 ran F a
67 22 66 syl F S LMHom T U LNoeM V LNoeM a LSubSp S T 𝑠 ran F a = V 𝑠 ran F a
68 simpl3 F S LMHom T U LNoeM V LNoeM a LSubSp S V LNoeM
69 lmhmrnlss F a S 𝑠 a LMHom T ran F a LSubSp T
70 10 69 syl F S LMHom T U LNoeM V LNoeM a LSubSp S ran F a LSubSp T
71 53 a1i F S LMHom T U LNoeM V LNoeM a LSubSp S ran F a ran F
72 lmhmlmod2 F S LMHom T T LMod
73 22 72 syl F S LMHom T U LNoeM V LNoeM a LSubSp S T LMod
74 lmhmrnlss F S LMHom T ran F LSubSp T
75 22 74 syl F S LMHom T U LNoeM V LNoeM a LSubSp S ran F LSubSp T
76 eqid LSubSp T = LSubSp T
77 eqid LSubSp V = LSubSp V
78 4 76 77 lsslss T LMod ran F LSubSp T ran F a LSubSp V ran F a LSubSp T ran F a ran F
79 73 75 78 syl2anc F S LMHom T U LNoeM V LNoeM a LSubSp S ran F a LSubSp V ran F a LSubSp T ran F a ran F
80 70 71 79 mpbir2and F S LMHom T U LNoeM V LNoeM a LSubSp S ran F a LSubSp V
81 eqid V 𝑠 ran F a = V 𝑠 ran F a
82 77 81 lnmlssfg V LNoeM ran F a LSubSp V V 𝑠 ran F a LFinGen
83 68 80 82 syl2anc F S LMHom T U LNoeM V LNoeM a LSubSp S V 𝑠 ran F a LFinGen
84 67 83 eqeltrd F S LMHom T U LNoeM V LNoeM a LSubSp S T 𝑠 ran F a LFinGen
85 eqid F a -1 0 ˙ = F a -1 0 ˙
86 eqid S 𝑠 a 𝑠 F a -1 0 ˙ = S 𝑠 a 𝑠 F a -1 0 ˙
87 eqid T 𝑠 ran F a = T 𝑠 ran F a
88 1 85 86 87 lmhmfgsplit F a S 𝑠 a LMHom T S 𝑠 a 𝑠 F a -1 0 ˙ LFinGen T 𝑠 ran F a LFinGen S 𝑠 a LFinGen
89 10 49 84 88 syl3anc F S LMHom T U LNoeM V LNoeM a LSubSp S S 𝑠 a LFinGen
90 89 ralrimiva F S LMHom T U LNoeM V LNoeM a LSubSp S S 𝑠 a LFinGen
91 7 islnm S LNoeM S LMod a LSubSp S S 𝑠 a LFinGen
92 6 90 91 sylanbrc F S LMHom T U LNoeM V LNoeM S LNoeM