| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmhmima.x |
|
| 2 |
|
lmhmima.y |
|
| 3 |
|
lmghm |
|
| 4 |
|
lmhmlmod2 |
|
| 5 |
2
|
lsssubg |
|
| 6 |
4 5
|
sylan |
|
| 7 |
|
ghmpreima |
|
| 8 |
3 6 7
|
syl2an2r |
|
| 9 |
|
lmhmlmod1 |
|
| 10 |
9
|
ad2antrr |
|
| 11 |
|
simprl |
|
| 12 |
|
cnvimass |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
13 14
|
lmhmf |
|
| 16 |
15
|
adantr |
|
| 17 |
12 16
|
fssdm |
|
| 18 |
17
|
sselda |
|
| 19 |
18
|
adantrl |
|
| 20 |
|
eqid |
|
| 21 |
|
eqid |
|
| 22 |
|
eqid |
|
| 23 |
13 20 21 22
|
lmodvscl |
|
| 24 |
10 11 19 23
|
syl3anc |
|
| 25 |
|
simpll |
|
| 26 |
|
eqid |
|
| 27 |
20 22 13 21 26
|
lmhmlin |
|
| 28 |
25 11 19 27
|
syl3anc |
|
| 29 |
4
|
ad2antrr |
|
| 30 |
|
simplr |
|
| 31 |
|
eqid |
|
| 32 |
20 31
|
lmhmsca |
|
| 33 |
32
|
adantr |
|
| 34 |
33
|
fveq2d |
|
| 35 |
34
|
eleq2d |
|
| 36 |
35
|
biimpar |
|
| 37 |
36
|
adantrr |
|
| 38 |
16
|
ffund |
|
| 39 |
|
simprr |
|
| 40 |
|
fvimacnvi |
|
| 41 |
38 39 40
|
syl2an2r |
|
| 42 |
|
eqid |
|
| 43 |
31 26 42 2
|
lssvscl |
|
| 44 |
29 30 37 41 43
|
syl22anc |
|
| 45 |
28 44
|
eqeltrd |
|
| 46 |
|
ffn |
|
| 47 |
|
elpreima |
|
| 48 |
16 46 47
|
3syl |
|
| 49 |
48
|
adantr |
|
| 50 |
24 45 49
|
mpbir2and |
|
| 51 |
50
|
ralrimivva |
|
| 52 |
9
|
adantr |
|
| 53 |
20 22 13 21 1
|
islss4 |
|
| 54 |
52 53
|
syl |
|
| 55 |
8 51 54
|
mpbir2and |
|