Description: The inverse image of a subspace under a homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lmhmima.x | |
|
lmhmima.y | |
||
Assertion | lmhmpreima | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmhmima.x | |
|
2 | lmhmima.y | |
|
3 | lmghm | |
|
4 | lmhmlmod2 | |
|
5 | 2 | lsssubg | |
6 | 4 5 | sylan | |
7 | ghmpreima | |
|
8 | 3 6 7 | syl2an2r | |
9 | lmhmlmod1 | |
|
10 | 9 | ad2antrr | |
11 | simprl | |
|
12 | cnvimass | |
|
13 | eqid | |
|
14 | eqid | |
|
15 | 13 14 | lmhmf | |
16 | 15 | adantr | |
17 | 12 16 | fssdm | |
18 | 17 | sselda | |
19 | 18 | adantrl | |
20 | eqid | |
|
21 | eqid | |
|
22 | eqid | |
|
23 | 13 20 21 22 | lmodvscl | |
24 | 10 11 19 23 | syl3anc | |
25 | simpll | |
|
26 | eqid | |
|
27 | 20 22 13 21 26 | lmhmlin | |
28 | 25 11 19 27 | syl3anc | |
29 | 4 | ad2antrr | |
30 | simplr | |
|
31 | eqid | |
|
32 | 20 31 | lmhmsca | |
33 | 32 | adantr | |
34 | 33 | fveq2d | |
35 | 34 | eleq2d | |
36 | 35 | biimpar | |
37 | 36 | adantrr | |
38 | 16 | ffund | |
39 | simprr | |
|
40 | fvimacnvi | |
|
41 | 38 39 40 | syl2an2r | |
42 | eqid | |
|
43 | 31 26 42 2 | lssvscl | |
44 | 29 30 37 41 43 | syl22anc | |
45 | 28 44 | eqeltrd | |
46 | ffn | |
|
47 | elpreima | |
|
48 | 16 46 47 | 3syl | |
49 | 48 | adantr | |
50 | 24 45 49 | mpbir2and | |
51 | 50 | ralrimivva | |
52 | 9 | adantr | |
53 | 20 22 13 21 1 | islss4 | |
54 | 52 53 | syl | |
55 | 8 51 54 | mpbir2and | |