Metamath Proof Explorer


Theorem lmhmpreima

Description: The inverse image of a subspace under a homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015)

Ref Expression
Hypotheses lmhmima.x X=LSubSpS
lmhmima.y Y=LSubSpT
Assertion lmhmpreima FSLMHomTUYF-1UX

Proof

Step Hyp Ref Expression
1 lmhmima.x X=LSubSpS
2 lmhmima.y Y=LSubSpT
3 lmghm FSLMHomTFSGrpHomT
4 lmhmlmod2 FSLMHomTTLMod
5 2 lsssubg TLModUYUSubGrpT
6 4 5 sylan FSLMHomTUYUSubGrpT
7 ghmpreima FSGrpHomTUSubGrpTF-1USubGrpS
8 3 6 7 syl2an2r FSLMHomTUYF-1USubGrpS
9 lmhmlmod1 FSLMHomTSLMod
10 9 ad2antrr FSLMHomTUYaBaseScalarSbF-1USLMod
11 simprl FSLMHomTUYaBaseScalarSbF-1UaBaseScalarS
12 cnvimass F-1UdomF
13 eqid BaseS=BaseS
14 eqid BaseT=BaseT
15 13 14 lmhmf FSLMHomTF:BaseSBaseT
16 15 adantr FSLMHomTUYF:BaseSBaseT
17 12 16 fssdm FSLMHomTUYF-1UBaseS
18 17 sselda FSLMHomTUYbF-1UbBaseS
19 18 adantrl FSLMHomTUYaBaseScalarSbF-1UbBaseS
20 eqid ScalarS=ScalarS
21 eqid S=S
22 eqid BaseScalarS=BaseScalarS
23 13 20 21 22 lmodvscl SLModaBaseScalarSbBaseSaSbBaseS
24 10 11 19 23 syl3anc FSLMHomTUYaBaseScalarSbF-1UaSbBaseS
25 simpll FSLMHomTUYaBaseScalarSbF-1UFSLMHomT
26 eqid T=T
27 20 22 13 21 26 lmhmlin FSLMHomTaBaseScalarSbBaseSFaSb=aTFb
28 25 11 19 27 syl3anc FSLMHomTUYaBaseScalarSbF-1UFaSb=aTFb
29 4 ad2antrr FSLMHomTUYaBaseScalarSbF-1UTLMod
30 simplr FSLMHomTUYaBaseScalarSbF-1UUY
31 eqid ScalarT=ScalarT
32 20 31 lmhmsca FSLMHomTScalarT=ScalarS
33 32 adantr FSLMHomTUYScalarT=ScalarS
34 33 fveq2d FSLMHomTUYBaseScalarT=BaseScalarS
35 34 eleq2d FSLMHomTUYaBaseScalarTaBaseScalarS
36 35 biimpar FSLMHomTUYaBaseScalarSaBaseScalarT
37 36 adantrr FSLMHomTUYaBaseScalarSbF-1UaBaseScalarT
38 16 ffund FSLMHomTUYFunF
39 simprr FSLMHomTUYaBaseScalarSbF-1UbF-1U
40 fvimacnvi FunFbF-1UFbU
41 38 39 40 syl2an2r FSLMHomTUYaBaseScalarSbF-1UFbU
42 eqid BaseScalarT=BaseScalarT
43 31 26 42 2 lssvscl TLModUYaBaseScalarTFbUaTFbU
44 29 30 37 41 43 syl22anc FSLMHomTUYaBaseScalarSbF-1UaTFbU
45 28 44 eqeltrd FSLMHomTUYaBaseScalarSbF-1UFaSbU
46 ffn F:BaseSBaseTFFnBaseS
47 elpreima FFnBaseSaSbF-1UaSbBaseSFaSbU
48 16 46 47 3syl FSLMHomTUYaSbF-1UaSbBaseSFaSbU
49 48 adantr FSLMHomTUYaBaseScalarSbF-1UaSbF-1UaSbBaseSFaSbU
50 24 45 49 mpbir2and FSLMHomTUYaBaseScalarSbF-1UaSbF-1U
51 50 ralrimivva FSLMHomTUYaBaseScalarSbF-1UaSbF-1U
52 9 adantr FSLMHomTUYSLMod
53 20 22 13 21 1 islss4 SLModF-1UXF-1USubGrpSaBaseScalarSbF-1UaSbF-1U
54 52 53 syl FSLMHomTUYF-1UXF-1USubGrpSaBaseScalarSbF-1UaSbF-1U
55 8 51 54 mpbir2and FSLMHomTUYF-1UX