Metamath Proof Explorer


Theorem lmodfopne

Description: The (functionalized) operations of a left module (over a nonzero ring) cannot be identical. (Contributed by NM, 31-May-2008) (Revised by AV, 2-Oct-2021)

Ref Expression
Hypotheses lmodfopne.t ·˙=𝑠𝑓W
lmodfopne.a +˙=+𝑓W
lmodfopne.v V=BaseW
lmodfopne.s S=ScalarW
lmodfopne.k K=BaseS
lmodfopne.0 0˙=0S
lmodfopne.1 1˙=1S
Assertion lmodfopne WLMod1˙0˙+˙·˙

Proof

Step Hyp Ref Expression
1 lmodfopne.t ·˙=𝑠𝑓W
2 lmodfopne.a +˙=+𝑓W
3 lmodfopne.v V=BaseW
4 lmodfopne.s S=ScalarW
5 lmodfopne.k K=BaseS
6 lmodfopne.0 0˙=0S
7 lmodfopne.1 1˙=1S
8 1 2 3 4 5 6 7 lmodfopnelem2 WLMod+˙=·˙0˙V1˙V
9 simpl 0˙V1˙V0˙V
10 eqid 0W=0W
11 3 10 lmod0vcl WLMod0WV
12 11 adantr WLMod+˙=·˙0WV
13 eqid +W=+W
14 3 13 2 plusfval 0˙V0WV0˙+˙0W=0˙+W0W
15 14 eqcomd 0˙V0WV0˙+W0W=0˙+˙0W
16 9 12 15 syl2anr WLMod+˙=·˙0˙V1˙V0˙+W0W=0˙+˙0W
17 oveq +˙=·˙0˙+˙0W=0˙·˙0W
18 17 ad2antlr WLMod+˙=·˙0˙V1˙V0˙+˙0W=0˙·˙0W
19 16 18 eqtrd WLMod+˙=·˙0˙V1˙V0˙+W0W=0˙·˙0W
20 lmodgrp WLModWGrp
21 20 adantr WLMod+˙=·˙WGrp
22 3 13 10 grprid WGrp0˙V0˙+W0W=0˙
23 21 9 22 syl2an WLMod+˙=·˙0˙V1˙V0˙+W0W=0˙
24 4 5 6 lmod0cl WLMod0˙K
25 24 11 jca WLMod0˙K0WV
26 25 adantr WLMod+˙=·˙0˙K0WV
27 26 adantr WLMod+˙=·˙0˙V1˙V0˙K0WV
28 eqid W=W
29 3 4 5 1 28 scafval 0˙K0WV0˙·˙0W=0˙W0W
30 27 29 syl WLMod+˙=·˙0˙V1˙V0˙·˙0W=0˙W0W
31 24 ancli WLModWLMod0˙K
32 31 adantr WLMod+˙=·˙WLMod0˙K
33 32 adantr WLMod+˙=·˙0˙V1˙VWLMod0˙K
34 4 28 5 10 lmodvs0 WLMod0˙K0˙W0W=0W
35 33 34 syl WLMod+˙=·˙0˙V1˙V0˙W0W=0W
36 simpr 0˙V1˙V1˙V
37 3 13 10 grprid WGrp1˙V1˙+W0W=1˙
38 21 36 37 syl2an WLMod+˙=·˙0˙V1˙V1˙+W0W=1˙
39 4 5 7 lmod1cl WLMod1˙K
40 39 adantr WLMod+˙=·˙1˙K
41 3 4 5 1 28 scafval 1˙K1˙V1˙·˙1˙=1˙W1˙
42 40 36 41 syl2an WLMod+˙=·˙0˙V1˙V1˙·˙1˙=1˙W1˙
43 3 4 28 7 lmodvs1 WLMod1˙V1˙W1˙=1˙
44 43 ad2ant2rl WLMod+˙=·˙0˙V1˙V1˙W1˙=1˙
45 42 44 eqtrd WLMod+˙=·˙0˙V1˙V1˙·˙1˙=1˙
46 oveq +˙=·˙1˙+˙1˙=1˙·˙1˙
47 46 eqcomd +˙=·˙1˙·˙1˙=1˙+˙1˙
48 47 ad2antlr WLMod+˙=·˙0˙V1˙V1˙·˙1˙=1˙+˙1˙
49 36 36 jca 0˙V1˙V1˙V1˙V
50 49 adantl WLMod+˙=·˙0˙V1˙V1˙V1˙V
51 3 13 2 plusfval 1˙V1˙V1˙+˙1˙=1˙+W1˙
52 50 51 syl WLMod+˙=·˙0˙V1˙V1˙+˙1˙=1˙+W1˙
53 48 52 eqtrd WLMod+˙=·˙0˙V1˙V1˙·˙1˙=1˙+W1˙
54 38 45 53 3eqtr2d WLMod+˙=·˙0˙V1˙V1˙+W0W=1˙+W1˙
55 21 adantr WLMod+˙=·˙0˙V1˙VWGrp
56 12 adantr WLMod+˙=·˙0˙V1˙V0WV
57 36 adantl WLMod+˙=·˙0˙V1˙V1˙V
58 3 13 grplcan WGrp0WV1˙V1˙V1˙+W0W=1˙+W1˙0W=1˙
59 55 56 57 57 58 syl13anc WLMod+˙=·˙0˙V1˙V1˙+W0W=1˙+W1˙0W=1˙
60 54 59 mpbid WLMod+˙=·˙0˙V1˙V0W=1˙
61 30 35 60 3eqtrd WLMod+˙=·˙0˙V1˙V0˙·˙0W=1˙
62 19 23 61 3eqtr3rd WLMod+˙=·˙0˙V1˙V1˙=0˙
63 8 62 mpdan WLMod+˙=·˙1˙=0˙
64 63 ex WLMod+˙=·˙1˙=0˙
65 64 necon3d WLMod1˙0˙+˙·˙
66 65 imp WLMod1˙0˙+˙·˙