| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmodvsmmulgdi.v |
|
| 2 |
|
lmodvsmmulgdi.f |
|
| 3 |
|
lmodvsmmulgdi.s |
|
| 4 |
|
lmodvsmmulgdi.k |
|
| 5 |
|
lmodvsmmulgdi.p |
|
| 6 |
|
lmodvsmmulgdi.e |
|
| 7 |
|
oveq1 |
|
| 8 |
|
oveq1 |
|
| 9 |
8
|
oveq1d |
|
| 10 |
7 9
|
eqeq12d |
|
| 11 |
10
|
imbi2d |
|
| 12 |
|
oveq1 |
|
| 13 |
|
oveq1 |
|
| 14 |
13
|
oveq1d |
|
| 15 |
12 14
|
eqeq12d |
|
| 16 |
15
|
imbi2d |
|
| 17 |
|
oveq1 |
|
| 18 |
|
oveq1 |
|
| 19 |
18
|
oveq1d |
|
| 20 |
17 19
|
eqeq12d |
|
| 21 |
20
|
imbi2d |
|
| 22 |
|
oveq1 |
|
| 23 |
|
oveq1 |
|
| 24 |
23
|
oveq1d |
|
| 25 |
22 24
|
eqeq12d |
|
| 26 |
25
|
imbi2d |
|
| 27 |
|
simpr |
|
| 28 |
|
simpr |
|
| 29 |
28
|
adantr |
|
| 30 |
|
eqid |
|
| 31 |
|
eqid |
|
| 32 |
1 2 3 30 31
|
lmod0vs |
|
| 33 |
27 29 32
|
syl2anc |
|
| 34 |
|
simpl |
|
| 35 |
34
|
adantr |
|
| 36 |
4 30 6
|
mulg0 |
|
| 37 |
35 36
|
syl |
|
| 38 |
37
|
oveq1d |
|
| 39 |
1 2 3 4
|
lmodvscl |
|
| 40 |
27 35 29 39
|
syl3anc |
|
| 41 |
1 31 5
|
mulg0 |
|
| 42 |
40 41
|
syl |
|
| 43 |
33 38 42
|
3eqtr4rd |
|
| 44 |
|
lmodgrp |
|
| 45 |
44
|
grpmndd |
|
| 46 |
45
|
ad2antll |
|
| 47 |
|
simpl |
|
| 48 |
40
|
adantl |
|
| 49 |
|
eqid |
|
| 50 |
1 5 49
|
mulgnn0p1 |
|
| 51 |
46 47 48 50
|
syl3anc |
|
| 52 |
51
|
adantr |
|
| 53 |
|
oveq1 |
|
| 54 |
27
|
adantl |
|
| 55 |
2
|
lmodring |
|
| 56 |
|
ringmnd |
|
| 57 |
55 56
|
syl |
|
| 58 |
57
|
ad2antll |
|
| 59 |
|
simprll |
|
| 60 |
4 6 58 47 59
|
mulgnn0cld |
|
| 61 |
29
|
adantl |
|
| 62 |
|
eqid |
|
| 63 |
1 49 2 3 4 62
|
lmodvsdir |
|
| 64 |
54 60 59 61 63
|
syl13anc |
|
| 65 |
4 6 62
|
mulgnn0p1 |
|
| 66 |
58 47 59 65
|
syl3anc |
|
| 67 |
66
|
eqcomd |
|
| 68 |
67
|
oveq1d |
|
| 69 |
64 68
|
eqtr3d |
|
| 70 |
53 69
|
sylan9eqr |
|
| 71 |
52 70
|
eqtrd |
|
| 72 |
71
|
exp31 |
|
| 73 |
72
|
a2d |
|
| 74 |
11 16 21 26 43 73
|
nn0ind |
|
| 75 |
74
|
exp4c |
|
| 76 |
75
|
3imp21 |
|
| 77 |
76
|
impcom |
|