Metamath Proof Explorer


Theorem lplncvrlvol

Description: An element covering a lattice plane is a lattice volume and vice-versa. (Contributed by NM, 15-Jul-2012)

Ref Expression
Hypotheses lplncvrlvol.b B=BaseK
lplncvrlvol.c C=K
lplncvrlvol.p P=LPlanesK
lplncvrlvol.v V=LVolsK
Assertion lplncvrlvol KHLXBYBXCYXPYV

Proof

Step Hyp Ref Expression
1 lplncvrlvol.b B=BaseK
2 lplncvrlvol.c C=K
3 lplncvrlvol.p P=LPlanesK
4 lplncvrlvol.v V=LVolsK
5 simpll1 KHLXBYBXCYXPKHL
6 simpll3 KHLXBYBXCYXPYB
7 simpr KHLXBYBXCYXPXP
8 simplr KHLXBYBXCYXPXCY
9 1 2 3 4 lvoli KHLYBXPXCYYV
10 5 6 7 8 9 syl31anc KHLXBYBXCYXPYV
11 simpll1 KHLXBYBXCYYVKHL
12 simpll2 KHLXBYBXCYYVXB
13 11 hllatd KHLXBYBXCYYVKLat
14 simpll3 KHLXBYBXCYYVYB
15 eqid K=K
16 1 15 latref KLatYBYKY
17 13 14 16 syl2anc KHLXBYBXCYYVYKY
18 11 adantr KHLXBYBXCYYVYAtomsKKHL
19 simplr KHLXBYBXCYYVYAtomsKYV
20 simpr KHLXBYBXCYYVYAtomsKYAtomsK
21 eqid AtomsK=AtomsK
22 15 21 4 lvolnleat KHLYVYAtomsK¬YKY
23 18 19 20 22 syl3anc KHLXBYBXCYYVYAtomsK¬YKY
24 23 ex KHLXBYBXCYYVYAtomsK¬YKY
25 17 24 mt2d KHLXBYBXCYYV¬YAtomsK
26 simplr KHLXBYBXCYYVXCY
27 breq1 X=0.KXCY0.KCY
28 26 27 syl5ibcom KHLXBYBXCYYVX=0.K0.KCY
29 eqid 0.K=0.K
30 1 29 2 21 isat2 KHLYBYAtomsK0.KCY
31 11 14 30 syl2anc KHLXBYBXCYYVYAtomsK0.KCY
32 28 31 sylibrd KHLXBYBXCYYVX=0.KYAtomsK
33 32 necon3bd KHLXBYBXCYYV¬YAtomsKX0.K
34 25 33 mpd KHLXBYBXCYYVX0.K
35 eqid LLinesK=LLinesK
36 35 4 lvolnelln KHLYV¬YLLinesK
37 11 36 sylancom KHLXBYBXCYYV¬YLLinesK
38 11 adantr KHLXBYBXCYYVXAtomsKKHL
39 14 adantr KHLXBYBXCYYVXAtomsKYB
40 simpr KHLXBYBXCYYVXAtomsKXAtomsK
41 simpllr KHLXBYBXCYYVXAtomsKXCY
42 1 2 21 35 llni KHLYBXAtomsKXCYYLLinesK
43 38 39 40 41 42 syl31anc KHLXBYBXCYYVXAtomsKYLLinesK
44 37 43 mtand KHLXBYBXCYYV¬XAtomsK
45 3 4 lvolnelpln KHLYV¬YP
46 11 45 sylancom KHLXBYBXCYYV¬YP
47 1 2 35 3 llncvrlpln KHLXBYBXCYXLLinesKYP
48 47 adantr KHLXBYBXCYYVXLLinesKYP
49 46 48 mtbird KHLXBYBXCYYV¬XLLinesK
50 1 15 29 21 35 3 lplnle KHLXBX0.K¬XAtomsK¬XLLinesKzPzKX
51 11 12 34 44 49 50 syl23anc KHLXBYBXCYYVzPzKX
52 simpr3 KHLXBYBXCYYVzPzKXzKX
53 simpll1 KHLXBYBXCYYVzPzKXKHL
54 hlop KHLKOP
55 53 54 syl KHLXBYBXCYYVzPzKXKOP
56 simpr2 KHLXBYBXCYYVzPzKXzP
57 1 3 lplnbase zPzB
58 56 57 syl KHLXBYBXCYYVzPzKXzB
59 simpll2 KHLXBYBXCYYVzPzKXXB
60 simpll3 KHLXBYBXCYYVzPzKXYB
61 simpr1 KHLXBYBXCYYVzPzKXYV
62 1 15 2 cvrle KHLXBYBXCYXKY
63 62 adantr KHLXBYBXCYYVzPzKXXKY
64 hlpos KHLKPoset
65 53 64 syl KHLXBYBXCYYVzPzKXKPoset
66 1 15 postr KPosetzBXBYBzKXXKYzKY
67 65 58 59 60 66 syl13anc KHLXBYBXCYYVzPzKXzKXXKYzKY
68 52 63 67 mp2and KHLXBYBXCYYVzPzKXzKY
69 15 2 3 4 lplncvrlvol2 KHLzPYVzKYzCY
70 53 56 61 68 69 syl31anc KHLXBYBXCYYVzPzKXzCY
71 simplr KHLXBYBXCYYVzPzKXXCY
72 1 15 2 cvrcmp2 KOPzBXBYBzCYXCYzKXz=X
73 55 58 59 60 70 71 72 syl132anc KHLXBYBXCYYVzPzKXzKXz=X
74 52 73 mpbid KHLXBYBXCYYVzPzKXz=X
75 74 56 eqeltrrd KHLXBYBXCYYVzPzKXXP
76 75 3exp2 KHLXBYBXCYYVzPzKXXP
77 76 imp KHLXBYBXCYYVzPzKXXP
78 77 rexlimdv KHLXBYBXCYYVzPzKXXP
79 51 78 mpd KHLXBYBXCYYVXP
80 10 79 impbida KHLXBYBXCYXPYV