Metamath Proof Explorer


Theorem lsmass

Description: Subgroup sum is associative. (Contributed by NM, 2-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypothesis lsmub1.p ˙=LSSumG
Assertion lsmass RSubGrpGTSubGrpGUSubGrpGR˙T˙U=R˙T˙U

Proof

Step Hyp Ref Expression
1 lsmub1.p ˙=LSSumG
2 eqid BaseG=BaseG
3 eqid +G=+G
4 2 3 1 lsmval RSubGrpGTSubGrpGR˙T=ranaR,bTa+Gb
5 4 3adant3 RSubGrpGTSubGrpGUSubGrpGR˙T=ranaR,bTa+Gb
6 5 rexeqdv RSubGrpGTSubGrpGUSubGrpGyR˙TcUx=y+GcyranaR,bTa+GbcUx=y+Gc
7 ovex a+GbV
8 7 rgen2w aRbTa+GbV
9 eqid aR,bTa+Gb=aR,bTa+Gb
10 oveq1 y=a+Gby+Gc=a+Gb+Gc
11 10 eqeq2d y=a+Gbx=y+Gcx=a+Gb+Gc
12 11 rexbidv y=a+GbcUx=y+GccUx=a+Gb+Gc
13 9 12 rexrnmpo aRbTa+GbVyranaR,bTa+GbcUx=y+GcaRbTcUx=a+Gb+Gc
14 8 13 ax-mp yranaR,bTa+GbcUx=y+GcaRbTcUx=a+Gb+Gc
15 6 14 bitrdi RSubGrpGTSubGrpGUSubGrpGyR˙TcUx=y+GcaRbTcUx=a+Gb+Gc
16 2 3 1 lsmval TSubGrpGUSubGrpGT˙U=ranbT,cUb+Gc
17 16 3adant1 RSubGrpGTSubGrpGUSubGrpGT˙U=ranbT,cUb+Gc
18 17 rexeqdv RSubGrpGTSubGrpGUSubGrpGzT˙Ux=a+GzzranbT,cUb+Gcx=a+Gz
19 ovex b+GcV
20 19 rgen2w bTcUb+GcV
21 eqid bT,cUb+Gc=bT,cUb+Gc
22 oveq2 z=b+Gca+Gz=a+Gb+Gc
23 22 eqeq2d z=b+Gcx=a+Gzx=a+Gb+Gc
24 21 23 rexrnmpo bTcUb+GcVzranbT,cUb+Gcx=a+GzbTcUx=a+Gb+Gc
25 20 24 ax-mp zranbT,cUb+Gcx=a+GzbTcUx=a+Gb+Gc
26 18 25 bitrdi RSubGrpGTSubGrpGUSubGrpGzT˙Ux=a+GzbTcUx=a+Gb+Gc
27 26 adantr RSubGrpGTSubGrpGUSubGrpGaRzT˙Ux=a+GzbTcUx=a+Gb+Gc
28 subgrcl RSubGrpGGGrp
29 28 3ad2ant1 RSubGrpGTSubGrpGUSubGrpGGGrp
30 29 ad2antrr RSubGrpGTSubGrpGUSubGrpGaRbTcUGGrp
31 2 subgss RSubGrpGRBaseG
32 31 3ad2ant1 RSubGrpGTSubGrpGUSubGrpGRBaseG
33 32 ad2antrr RSubGrpGTSubGrpGUSubGrpGaRbTcURBaseG
34 simplr RSubGrpGTSubGrpGUSubGrpGaRbTcUaR
35 33 34 sseldd RSubGrpGTSubGrpGUSubGrpGaRbTcUaBaseG
36 2 subgss TSubGrpGTBaseG
37 36 3ad2ant2 RSubGrpGTSubGrpGUSubGrpGTBaseG
38 37 ad2antrr RSubGrpGTSubGrpGUSubGrpGaRbTcUTBaseG
39 simprl RSubGrpGTSubGrpGUSubGrpGaRbTcUbT
40 38 39 sseldd RSubGrpGTSubGrpGUSubGrpGaRbTcUbBaseG
41 2 subgss USubGrpGUBaseG
42 41 3ad2ant3 RSubGrpGTSubGrpGUSubGrpGUBaseG
43 42 ad2antrr RSubGrpGTSubGrpGUSubGrpGaRbTcUUBaseG
44 simprr RSubGrpGTSubGrpGUSubGrpGaRbTcUcU
45 43 44 sseldd RSubGrpGTSubGrpGUSubGrpGaRbTcUcBaseG
46 2 3 grpass GGrpaBaseGbBaseGcBaseGa+Gb+Gc=a+Gb+Gc
47 30 35 40 45 46 syl13anc RSubGrpGTSubGrpGUSubGrpGaRbTcUa+Gb+Gc=a+Gb+Gc
48 47 eqeq2d RSubGrpGTSubGrpGUSubGrpGaRbTcUx=a+Gb+Gcx=a+Gb+Gc
49 48 2rexbidva RSubGrpGTSubGrpGUSubGrpGaRbTcUx=a+Gb+GcbTcUx=a+Gb+Gc
50 27 49 bitr4d RSubGrpGTSubGrpGUSubGrpGaRzT˙Ux=a+GzbTcUx=a+Gb+Gc
51 50 rexbidva RSubGrpGTSubGrpGUSubGrpGaRzT˙Ux=a+GzaRbTcUx=a+Gb+Gc
52 15 51 bitr4d RSubGrpGTSubGrpGUSubGrpGyR˙TcUx=y+GcaRzT˙Ux=a+Gz
53 29 grpmndd RSubGrpGTSubGrpGUSubGrpGGMnd
54 2 1 lsmssv GMndRBaseGTBaseGR˙TBaseG
55 53 32 37 54 syl3anc RSubGrpGTSubGrpGUSubGrpGR˙TBaseG
56 2 3 1 lsmelvalx GGrpR˙TBaseGUBaseGxR˙T˙UyR˙TcUx=y+Gc
57 29 55 42 56 syl3anc RSubGrpGTSubGrpGUSubGrpGxR˙T˙UyR˙TcUx=y+Gc
58 2 1 lsmssv GMndTBaseGUBaseGT˙UBaseG
59 53 37 42 58 syl3anc RSubGrpGTSubGrpGUSubGrpGT˙UBaseG
60 2 3 1 lsmelvalx GGrpRBaseGT˙UBaseGxR˙T˙UaRzT˙Ux=a+Gz
61 29 32 59 60 syl3anc RSubGrpGTSubGrpGUSubGrpGxR˙T˙UaRzT˙Ux=a+Gz
62 52 57 61 3bitr4d RSubGrpGTSubGrpGUSubGrpGxR˙T˙UxR˙T˙U
63 62 eqrdv RSubGrpGTSubGrpGUSubGrpGR˙T˙U=R˙T˙U