Description: Subgroup sum is associative. (Contributed by NM, 2-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lsmub1.p | |
|
Assertion | lsmass | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmub1.p | |
|
2 | eqid | |
|
3 | eqid | |
|
4 | 2 3 1 | lsmval | |
5 | 4 | 3adant3 | |
6 | 5 | rexeqdv | |
7 | ovex | |
|
8 | 7 | rgen2w | |
9 | eqid | |
|
10 | oveq1 | |
|
11 | 10 | eqeq2d | |
12 | 11 | rexbidv | |
13 | 9 12 | rexrnmpo | |
14 | 8 13 | ax-mp | |
15 | 6 14 | bitrdi | |
16 | 2 3 1 | lsmval | |
17 | 16 | 3adant1 | |
18 | 17 | rexeqdv | |
19 | ovex | |
|
20 | 19 | rgen2w | |
21 | eqid | |
|
22 | oveq2 | |
|
23 | 22 | eqeq2d | |
24 | 21 23 | rexrnmpo | |
25 | 20 24 | ax-mp | |
26 | 18 25 | bitrdi | |
27 | 26 | adantr | |
28 | subgrcl | |
|
29 | 28 | 3ad2ant1 | |
30 | 29 | ad2antrr | |
31 | 2 | subgss | |
32 | 31 | 3ad2ant1 | |
33 | 32 | ad2antrr | |
34 | simplr | |
|
35 | 33 34 | sseldd | |
36 | 2 | subgss | |
37 | 36 | 3ad2ant2 | |
38 | 37 | ad2antrr | |
39 | simprl | |
|
40 | 38 39 | sseldd | |
41 | 2 | subgss | |
42 | 41 | 3ad2ant3 | |
43 | 42 | ad2antrr | |
44 | simprr | |
|
45 | 43 44 | sseldd | |
46 | 2 3 | grpass | |
47 | 30 35 40 45 46 | syl13anc | |
48 | 47 | eqeq2d | |
49 | 48 | 2rexbidva | |
50 | 27 49 | bitr4d | |
51 | 50 | rexbidva | |
52 | 15 51 | bitr4d | |
53 | 29 | grpmndd | |
54 | 2 1 | lsmssv | |
55 | 53 32 37 54 | syl3anc | |
56 | 2 3 1 | lsmelvalx | |
57 | 29 55 42 56 | syl3anc | |
58 | 2 1 | lsmssv | |
59 | 53 37 42 58 | syl3anc | |
60 | 2 3 1 | lsmelvalx | |
61 | 29 32 59 60 | syl3anc | |
62 | 52 57 61 | 3bitr4d | |
63 | 62 | eqrdv | |