Metamath Proof Explorer


Theorem m2cpminvid2

Description: The transformation applied to the inverse transformation of a constant polynomial matrix over the ring R results in the matrix itself. (Contributed by AV, 12-Nov-2019) (Revised by AV, 14-Dec-2019)

Ref Expression
Hypotheses m2cpminvid2.s S=NConstPolyMatR
m2cpminvid2.i I=NcPolyMatToMatR
m2cpminvid2.t T=NmatToPolyMatR
Assertion m2cpminvid2 NFinRRingMSTIM=M

Proof

Step Hyp Ref Expression
1 m2cpminvid2.s S=NConstPolyMatR
2 m2cpminvid2.i I=NcPolyMatToMatR
3 m2cpminvid2.t T=NmatToPolyMatR
4 2 1 cpm2mval NFinRRingMSIM=xN,yNcoe1xMy0
5 4 fveq2d NFinRRingMSTIM=TxN,yNcoe1xMy0
6 simp1 NFinRRingMSNFin
7 simp2 NFinRRingMSRRing
8 eqid NMatR=NMatR
9 eqid BaseR=BaseR
10 eqid BaseNMatR=BaseNMatR
11 eqid NMatPoly1R=NMatPoly1R
12 eqid BasePoly1R=BasePoly1R
13 eqid BaseNMatPoly1R=BaseNMatPoly1R
14 simp2 NFinRRingMSxNyNxN
15 simp3 NFinRRingMSxNyNyN
16 eqid Poly1R=Poly1R
17 1 16 11 13 cpmatpmat NFinRRingMSMBaseNMatPoly1R
18 17 3ad2ant1 NFinRRingMSxNyNMBaseNMatPoly1R
19 11 12 13 14 15 18 matecld NFinRRingMSxNyNxMyBasePoly1R
20 0nn0 00
21 eqid coe1xMy=coe1xMy
22 21 12 16 9 coe1fvalcl xMyBasePoly1R00coe1xMy0BaseR
23 19 20 22 sylancl NFinRRingMSxNyNcoe1xMy0BaseR
24 8 9 10 6 7 23 matbas2d NFinRRingMSxN,yNcoe1xMy0BaseNMatR
25 eqid algScPoly1R=algScPoly1R
26 3 8 10 16 25 mat2pmatval NFinRRingxN,yNcoe1xMy0BaseNMatRTxN,yNcoe1xMy0=iN,jNalgScPoly1RixN,yNcoe1xMy0j
27 6 7 24 26 syl3anc NFinRRingMSTxN,yNcoe1xMy0=iN,jNalgScPoly1RixN,yNcoe1xMy0j
28 eqidd NFinRRingMSiNjNxN,yNcoe1xMy0=xN,yNcoe1xMy0
29 oveq12 x=iy=jxMy=iMj
30 29 fveq2d x=iy=jcoe1xMy=coe1iMj
31 30 fveq1d x=iy=jcoe1xMy0=coe1iMj0
32 31 adantl NFinRRingMSiNjNx=iy=jcoe1xMy0=coe1iMj0
33 simp2 NFinRRingMSiNjNiN
34 simp3 NFinRRingMSiNjNjN
35 fvexd NFinRRingMSiNjNcoe1iMj0V
36 28 32 33 34 35 ovmpod NFinRRingMSiNjNixN,yNcoe1xMy0j=coe1iMj0
37 36 fveq2d NFinRRingMSiNjNalgScPoly1RixN,yNcoe1xMy0j=algScPoly1Rcoe1iMj0
38 37 mpoeq3dva NFinRRingMSiN,jNalgScPoly1RixN,yNcoe1xMy0j=iN,jNalgScPoly1Rcoe1iMj0
39 27 38 eqtrd NFinRRingMSTxN,yNcoe1xMy0=iN,jNalgScPoly1Rcoe1iMj0
40 1 16 m2cpminvid2lem NFinRRingMSxNyNn0coe1algScPoly1Rcoe1xMy0n=coe1xMyn
41 simpl2 NFinRRingMSxNyNRRing
42 simprl NFinRRingMSxNyNxN
43 simprr NFinRRingMSxNyNyN
44 17 adantr NFinRRingMSxNyNMBaseNMatPoly1R
45 11 12 13 42 43 44 matecld NFinRRingMSxNyNxMyBasePoly1R
46 45 20 22 sylancl NFinRRingMSxNyNcoe1xMy0BaseR
47 16 25 9 12 ply1sclcl RRingcoe1xMy0BaseRalgScPoly1Rcoe1xMy0BasePoly1R
48 41 46 47 syl2anc NFinRRingMSxNyNalgScPoly1Rcoe1xMy0BasePoly1R
49 eqid coe1algScPoly1Rcoe1xMy0=coe1algScPoly1Rcoe1xMy0
50 16 12 49 21 ply1coe1eq RRingalgScPoly1Rcoe1xMy0BasePoly1RxMyBasePoly1Rn0coe1algScPoly1Rcoe1xMy0n=coe1xMynalgScPoly1Rcoe1xMy0=xMy
51 50 bicomd RRingalgScPoly1Rcoe1xMy0BasePoly1RxMyBasePoly1RalgScPoly1Rcoe1xMy0=xMyn0coe1algScPoly1Rcoe1xMy0n=coe1xMyn
52 41 48 45 51 syl3anc NFinRRingMSxNyNalgScPoly1Rcoe1xMy0=xMyn0coe1algScPoly1Rcoe1xMy0n=coe1xMyn
53 40 52 mpbird NFinRRingMSxNyNalgScPoly1Rcoe1xMy0=xMy
54 53 ralrimivva NFinRRingMSxNyNalgScPoly1Rcoe1xMy0=xMy
55 eqidd NFinRRingMSxNyNiN,jNalgScPoly1Rcoe1iMj0=iN,jNalgScPoly1Rcoe1iMj0
56 oveq12 i=xj=yiMj=xMy
57 56 fveq2d i=xj=ycoe1iMj=coe1xMy
58 57 fveq1d i=xj=ycoe1iMj0=coe1xMy0
59 58 fveq2d i=xj=yalgScPoly1Rcoe1iMj0=algScPoly1Rcoe1xMy0
60 59 adantl NFinRRingMSxNyNi=xj=yalgScPoly1Rcoe1iMj0=algScPoly1Rcoe1xMy0
61 simplr NFinRRingMSxNyNxN
62 simpr NFinRRingMSxNyNyN
63 fvexd NFinRRingMSxNyNalgScPoly1Rcoe1xMy0V
64 55 60 61 62 63 ovmpod NFinRRingMSxNyNxiN,jNalgScPoly1Rcoe1iMj0y=algScPoly1Rcoe1xMy0
65 64 eqeq1d NFinRRingMSxNyNxiN,jNalgScPoly1Rcoe1iMj0y=xMyalgScPoly1Rcoe1xMy0=xMy
66 65 anasss NFinRRingMSxNyNxiN,jNalgScPoly1Rcoe1iMj0y=xMyalgScPoly1Rcoe1xMy0=xMy
67 66 2ralbidva NFinRRingMSxNyNxiN,jNalgScPoly1Rcoe1iMj0y=xMyxNyNalgScPoly1Rcoe1xMy0=xMy
68 54 67 mpbird NFinRRingMSxNyNxiN,jNalgScPoly1Rcoe1iMj0y=xMy
69 fvexd NFinRRingMSPoly1RV
70 7 3ad2ant1 NFinRRingMSiNjNRRing
71 17 3ad2ant1 NFinRRingMSiNjNMBaseNMatPoly1R
72 11 12 13 33 34 71 matecld NFinRRingMSiNjNiMjBasePoly1R
73 eqid coe1iMj=coe1iMj
74 73 12 16 9 coe1fvalcl iMjBasePoly1R00coe1iMj0BaseR
75 72 20 74 sylancl NFinRRingMSiNjNcoe1iMj0BaseR
76 16 25 9 12 ply1sclcl RRingcoe1iMj0BaseRalgScPoly1Rcoe1iMj0BasePoly1R
77 70 75 76 syl2anc NFinRRingMSiNjNalgScPoly1Rcoe1iMj0BasePoly1R
78 11 12 13 6 69 77 matbas2d NFinRRingMSiN,jNalgScPoly1Rcoe1iMj0BaseNMatPoly1R
79 11 13 eqmat iN,jNalgScPoly1Rcoe1iMj0BaseNMatPoly1RMBaseNMatPoly1RiN,jNalgScPoly1Rcoe1iMj0=MxNyNxiN,jNalgScPoly1Rcoe1iMj0y=xMy
80 78 17 79 syl2anc NFinRRingMSiN,jNalgScPoly1Rcoe1iMj0=MxNyNxiN,jNalgScPoly1Rcoe1iMj0y=xMy
81 68 80 mpbird NFinRRingMSiN,jNalgScPoly1Rcoe1iMj0=M
82 5 39 81 3eqtrd NFinRRingMSTIM=M