| Step | Hyp | Ref | Expression | 
						
							| 1 |  | m2cpminvid2.s |  | 
						
							| 2 |  | m2cpminvid2.i |  | 
						
							| 3 |  | m2cpminvid2.t |  | 
						
							| 4 | 2 1 | cpm2mval |  | 
						
							| 5 | 4 | fveq2d |  | 
						
							| 6 |  | simp1 |  | 
						
							| 7 |  | simp2 |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 |  | simp2 |  | 
						
							| 15 |  | simp3 |  | 
						
							| 16 |  | eqid |  | 
						
							| 17 | 1 16 11 13 | cpmatpmat |  | 
						
							| 18 | 17 | 3ad2ant1 |  | 
						
							| 19 | 11 12 13 14 15 18 | matecld |  | 
						
							| 20 |  | 0nn0 |  | 
						
							| 21 |  | eqid |  | 
						
							| 22 | 21 12 16 9 | coe1fvalcl |  | 
						
							| 23 | 19 20 22 | sylancl |  | 
						
							| 24 | 8 9 10 6 7 23 | matbas2d |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 | 3 8 10 16 25 | mat2pmatval |  | 
						
							| 27 | 6 7 24 26 | syl3anc |  | 
						
							| 28 |  | eqidd |  | 
						
							| 29 |  | oveq12 |  | 
						
							| 30 | 29 | fveq2d |  | 
						
							| 31 | 30 | fveq1d |  | 
						
							| 32 | 31 | adantl |  | 
						
							| 33 |  | simp2 |  | 
						
							| 34 |  | simp3 |  | 
						
							| 35 |  | fvexd |  | 
						
							| 36 | 28 32 33 34 35 | ovmpod |  | 
						
							| 37 | 36 | fveq2d |  | 
						
							| 38 | 37 | mpoeq3dva |  | 
						
							| 39 | 27 38 | eqtrd |  | 
						
							| 40 | 1 16 | m2cpminvid2lem |  | 
						
							| 41 |  | simpl2 |  | 
						
							| 42 |  | simprl |  | 
						
							| 43 |  | simprr |  | 
						
							| 44 | 17 | adantr |  | 
						
							| 45 | 11 12 13 42 43 44 | matecld |  | 
						
							| 46 | 45 20 22 | sylancl |  | 
						
							| 47 | 16 25 9 12 | ply1sclcl |  | 
						
							| 48 | 41 46 47 | syl2anc |  | 
						
							| 49 |  | eqid |  | 
						
							| 50 | 16 12 49 21 | ply1coe1eq |  | 
						
							| 51 | 50 | bicomd |  | 
						
							| 52 | 41 48 45 51 | syl3anc |  | 
						
							| 53 | 40 52 | mpbird |  | 
						
							| 54 | 53 | ralrimivva |  | 
						
							| 55 |  | eqidd |  | 
						
							| 56 |  | oveq12 |  | 
						
							| 57 | 56 | fveq2d |  | 
						
							| 58 | 57 | fveq1d |  | 
						
							| 59 | 58 | fveq2d |  | 
						
							| 60 | 59 | adantl |  | 
						
							| 61 |  | simplr |  | 
						
							| 62 |  | simpr |  | 
						
							| 63 |  | fvexd |  | 
						
							| 64 | 55 60 61 62 63 | ovmpod |  | 
						
							| 65 | 64 | eqeq1d |  | 
						
							| 66 | 65 | anasss |  | 
						
							| 67 | 66 | 2ralbidva |  | 
						
							| 68 | 54 67 | mpbird |  | 
						
							| 69 |  | fvexd |  | 
						
							| 70 | 7 | 3ad2ant1 |  | 
						
							| 71 | 17 | 3ad2ant1 |  | 
						
							| 72 | 11 12 13 33 34 71 | matecld |  | 
						
							| 73 |  | eqid |  | 
						
							| 74 | 73 12 16 9 | coe1fvalcl |  | 
						
							| 75 | 72 20 74 | sylancl |  | 
						
							| 76 | 16 25 9 12 | ply1sclcl |  | 
						
							| 77 | 70 75 76 | syl2anc |  | 
						
							| 78 | 11 12 13 6 69 77 | matbas2d |  | 
						
							| 79 | 11 13 | eqmat |  | 
						
							| 80 | 78 17 79 | syl2anc |  | 
						
							| 81 | 68 80 | mpbird |  | 
						
							| 82 | 5 39 81 | 3eqtrd |  |