Metamath Proof Explorer


Theorem m2pmfzgsumcl

Description: Closure of the sum of scaled transformed matrices. (Contributed by AV, 4-Nov-2019) (Proof shortened by AV, 28-Nov-2019)

Ref Expression
Hypotheses m2pmfzmap.a A=NMatR
m2pmfzmap.b B=BaseA
m2pmfzmap.p P=Poly1R
m2pmfzmap.y Y=NMatP
m2pmfzmap.t T=NmatToPolyMatR
m2pmfzmapfsupp.x X=var1R
m2pmfzmapfsupp.e ×˙=mulGrpP
m2pmfzgsumcl.m ·˙=Y
Assertion m2pmfzgsumcl NFinRCRingMBs0bB0sYi=0si×˙X·˙TbiBaseY

Proof

Step Hyp Ref Expression
1 m2pmfzmap.a A=NMatR
2 m2pmfzmap.b B=BaseA
3 m2pmfzmap.p P=Poly1R
4 m2pmfzmap.y Y=NMatP
5 m2pmfzmap.t T=NmatToPolyMatR
6 m2pmfzmapfsupp.x X=var1R
7 m2pmfzmapfsupp.e ×˙=mulGrpP
8 m2pmfzgsumcl.m ·˙=Y
9 eqid BaseY=BaseY
10 crngring RCRingRRing
11 3 ply1ring RRingPRing
12 10 11 syl RCRingPRing
13 4 matring NFinPRingYRing
14 12 13 sylan2 NFinRCRingYRing
15 ringcmn YRingYCMnd
16 14 15 syl NFinRCRingYCMnd
17 16 3adant3 NFinRCRingMBYCMnd
18 17 adantr NFinRCRingMBs0bB0sYCMnd
19 fzfid NFinRCRingMBs0bB0s0sFin
20 simpll1 NFinRCRingMBs0bB0si0sNFin
21 12 3ad2ant2 NFinRCRingMBPRing
22 21 ad2antrr NFinRCRingMBs0bB0si0sPRing
23 10 3ad2ant2 NFinRCRingMBRRing
24 23 adantr NFinRCRingMBs0bB0sRRing
25 elfznn0 i0si0
26 eqid mulGrpP=mulGrpP
27 eqid BaseP=BaseP
28 3 6 26 7 27 ply1moncl RRingi0i×˙XBaseP
29 24 25 28 syl2an NFinRCRingMBs0bB0si0si×˙XBaseP
30 10 anim2i NFinRCRingNFinRRing
31 30 3adant3 NFinRCRingMBNFinRRing
32 simpl s0bB0ss0
33 31 32 anim12i NFinRCRingMBs0bB0sNFinRRings0
34 df-3an NFinRRings0NFinRRings0
35 33 34 sylibr NFinRCRingMBs0bB0sNFinRRings0
36 simprr NFinRCRingMBs0bB0sbB0s
37 36 anim1i NFinRCRingMBs0bB0si0sbB0si0s
38 1 2 3 4 5 m2pmfzmap NFinRRings0bB0si0sTbiBaseY
39 35 37 38 syl2an2r NFinRCRingMBs0bB0si0sTbiBaseY
40 27 4 9 8 matvscl NFinPRingi×˙XBasePTbiBaseYi×˙X·˙TbiBaseY
41 20 22 29 39 40 syl22anc NFinRCRingMBs0bB0si0si×˙X·˙TbiBaseY
42 41 ralrimiva NFinRCRingMBs0bB0si0si×˙X·˙TbiBaseY
43 9 18 19 42 gsummptcl NFinRCRingMBs0bB0sYi=0si×˙X·˙TbiBaseY