Metamath Proof Explorer


Theorem madetsumid

Description: The identity summand in the Leibniz' formula of a determinant for a square matrix over a commutative ring. (Contributed by AV, 29-Dec-2018)

Ref Expression
Hypotheses madetsumid.a A=NMatR
madetsumid.b B=BaseA
madetsumid.u U=mulGrpR
madetsumid.y Y=ℤRHomR
madetsumid.s S=pmSgnN
madetsumid.t ·˙=R
Assertion madetsumid RCRingMBP=INYSP·˙UrNPrMr=UrNrMr

Proof

Step Hyp Ref Expression
1 madetsumid.a A=NMatR
2 madetsumid.b B=BaseA
3 madetsumid.u U=mulGrpR
4 madetsumid.y Y=ℤRHomR
5 madetsumid.s S=pmSgnN
6 madetsumid.t ·˙=R
7 fveq2 P=INYSP=YSIN
8 fveq1 P=INPr=INr
9 8 oveq1d P=INPrMr=INrMr
10 9 mpteq2dv P=INrNPrMr=rNINrMr
11 10 oveq2d P=INUrNPrMr=UrNINrMr
12 7 11 oveq12d P=INYSP·˙UrNPrMr=YSIN·˙UrNINrMr
13 12 3ad2ant3 RCRingMBP=INYSP·˙UrNPrMr=YSIN·˙UrNINrMr
14 1 2 matrcl MBNFinRV
15 14 simpld MBNFin
16 4 5 coeq12i YS=ℤRHomRpmSgnN
17 16 a1i RCRingNFinYS=ℤRHomRpmSgnN
18 eqid SymGrpN=SymGrpN
19 18 symgid NFinIN=0SymGrpN
20 19 adantl RCRingNFinIN=0SymGrpN
21 17 20 fveq12d RCRingNFinYSIN=ℤRHomRpmSgnN0SymGrpN
22 crngring RCRingRRing
23 zrhpsgnmhm RRingNFinℤRHomRpmSgnNSymGrpNMndHommulGrpR
24 3 oveq2i SymGrpNMndHomU=SymGrpNMndHommulGrpR
25 23 24 eleqtrrdi RRingNFinℤRHomRpmSgnNSymGrpNMndHomU
26 22 25 sylan RCRingNFinℤRHomRpmSgnNSymGrpNMndHomU
27 eqid 0SymGrpN=0SymGrpN
28 eqid 1R=1R
29 3 28 ringidval 1R=0U
30 27 29 mhm0 ℤRHomRpmSgnNSymGrpNMndHomUℤRHomRpmSgnN0SymGrpN=1R
31 26 30 syl RCRingNFinℤRHomRpmSgnN0SymGrpN=1R
32 21 31 eqtrd RCRingNFinYSIN=1R
33 fvresi rNINr=r
34 33 adantl RCRingNFinrNINr=r
35 34 oveq1d RCRingNFinrNINrMr=rMr
36 35 mpteq2dva RCRingNFinrNINrMr=rNrMr
37 36 oveq2d RCRingNFinUrNINrMr=UrNrMr
38 32 37 oveq12d RCRingNFinYSIN·˙UrNINrMr=1R·˙UrNrMr
39 15 38 sylan2 RCRingMBYSIN·˙UrNINrMr=1R·˙UrNrMr
40 1 2 3 matgsumcl RCRingMBUrNrMrBaseR
41 eqid BaseR=BaseR
42 41 6 28 ringlidm RRingUrNrMrBaseR1R·˙UrNrMr=UrNrMr
43 22 40 42 syl2an2r RCRingMB1R·˙UrNrMr=UrNrMr
44 39 43 eqtrd RCRingMBYSIN·˙UrNINrMr=UrNrMr
45 44 3adant3 RCRingMBP=INYSIN·˙UrNINrMr=UrNrMr
46 13 45 eqtrd RCRingMBP=INYSP·˙UrNPrMr=UrNrMr