Description: The identity summand in the Leibniz' formula of a determinant for a square matrix over a commutative ring. (Contributed by AV, 29-Dec-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | madetsumid.a | |
|
madetsumid.b | |
||
madetsumid.u | |
||
madetsumid.y | |
||
madetsumid.s | |
||
madetsumid.t | |
||
Assertion | madetsumid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | madetsumid.a | |
|
2 | madetsumid.b | |
|
3 | madetsumid.u | |
|
4 | madetsumid.y | |
|
5 | madetsumid.s | |
|
6 | madetsumid.t | |
|
7 | fveq2 | |
|
8 | fveq1 | |
|
9 | 8 | oveq1d | |
10 | 9 | mpteq2dv | |
11 | 10 | oveq2d | |
12 | 7 11 | oveq12d | |
13 | 12 | 3ad2ant3 | |
14 | 1 2 | matrcl | |
15 | 14 | simpld | |
16 | 4 5 | coeq12i | |
17 | 16 | a1i | |
18 | eqid | |
|
19 | 18 | symgid | |
20 | 19 | adantl | |
21 | 17 20 | fveq12d | |
22 | crngring | |
|
23 | zrhpsgnmhm | |
|
24 | 3 | oveq2i | |
25 | 23 24 | eleqtrrdi | |
26 | 22 25 | sylan | |
27 | eqid | |
|
28 | eqid | |
|
29 | 3 28 | ringidval | |
30 | 27 29 | mhm0 | |
31 | 26 30 | syl | |
32 | 21 31 | eqtrd | |
33 | fvresi | |
|
34 | 33 | adantl | |
35 | 34 | oveq1d | |
36 | 35 | mpteq2dva | |
37 | 36 | oveq2d | |
38 | 32 37 | oveq12d | |
39 | 15 38 | sylan2 | |
40 | 1 2 3 | matgsumcl | |
41 | eqid | |
|
42 | 41 6 28 | ringlidm | |
43 | 22 40 42 | syl2an2r | |
44 | 39 43 | eqtrd | |
45 | 44 | 3adant3 | |
46 | 13 45 | eqtrd | |