Metamath Proof Explorer


Theorem mapdh6cN

Description: Lemmma for mapdh6N . (Contributed by NM, 24-Apr-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdh.q Q=0C
mapdh.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
mapdh.h H=LHypK
mapdh.m M=mapdKW
mapdh.u U=DVecHKW
mapdh.v V=BaseU
mapdh.s -˙=-U
mapdhc.o 0˙=0U
mapdh.n N=LSpanU
mapdh.c C=LCDualKW
mapdh.d D=BaseC
mapdh.r R=-C
mapdh.j J=LSpanC
mapdh.k φKHLWH
mapdhc.f φFD
mapdh.mn φMNX=JF
mapdhcl.x φXV0˙
mapdh.p +˙=+U
mapdh.a ˙=+C
mapdh6c.y φYV
mapdh6c.z φZ=0˙
mapdh6c.ne φ¬XNYZ
Assertion mapdh6cN φIXFY+˙Z=IXFY˙IXFZ

Proof

Step Hyp Ref Expression
1 mapdh.q Q=0C
2 mapdh.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
3 mapdh.h H=LHypK
4 mapdh.m M=mapdKW
5 mapdh.u U=DVecHKW
6 mapdh.v V=BaseU
7 mapdh.s -˙=-U
8 mapdhc.o 0˙=0U
9 mapdh.n N=LSpanU
10 mapdh.c C=LCDualKW
11 mapdh.d D=BaseC
12 mapdh.r R=-C
13 mapdh.j J=LSpanC
14 mapdh.k φKHLWH
15 mapdhc.f φFD
16 mapdh.mn φMNX=JF
17 mapdhcl.x φXV0˙
18 mapdh.p +˙=+U
19 mapdh.a ˙=+C
20 mapdh6c.y φYV
21 mapdh6c.z φZ=0˙
22 mapdh6c.ne φ¬XNYZ
23 3 10 14 lcdlmod φCLMod
24 lmodgrp CLModCGrp
25 23 24 syl φCGrp
26 3 5 14 dvhlvec φULVec
27 17 eldifad φXV
28 3 5 14 dvhlmod φULMod
29 6 8 lmod0vcl ULMod0˙V
30 28 29 syl φ0˙V
31 21 30 eqeltrd φZV
32 6 9 26 27 20 31 22 lspindpi φNXNYNXNZ
33 32 simpld φNXNY
34 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 20 33 mapdhcl φIXFYD
35 11 19 1 grprid CGrpIXFYDIXFY˙Q=IXFY
36 25 34 35 syl2anc φIXFY˙Q=IXFY
37 21 oteq3d φXFZ=XF0˙
38 37 fveq2d φIXFZ=IXF0˙
39 1 2 8 17 15 mapdhval0 φIXF0˙=Q
40 38 39 eqtrd φIXFZ=Q
41 40 oveq2d φIXFY˙IXFZ=IXFY˙Q
42 21 oveq2d φY+˙Z=Y+˙0˙
43 lmodgrp ULModUGrp
44 28 43 syl φUGrp
45 6 18 8 grprid UGrpYVY+˙0˙=Y
46 44 20 45 syl2anc φY+˙0˙=Y
47 42 46 eqtrd φY+˙Z=Y
48 47 oteq3d φXFY+˙Z=XFY
49 48 fveq2d φIXFY+˙Z=IXFY
50 36 41 49 3eqtr4rd φIXFY+˙Z=IXFY˙IXFZ