Metamath Proof Explorer


Theorem mapdheq4lem

Description: Lemma for mapdheq4 . Part (4) in Baer p. 46. (Contributed by NM, 12-Apr-2015)

Ref Expression
Hypotheses mapdh.q Q = 0 C
mapdh.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
mapdh.h H = LHyp K
mapdh.m M = mapd K W
mapdh.u U = DVecH K W
mapdh.v V = Base U
mapdh.s - ˙ = - U
mapdhc.o 0 ˙ = 0 U
mapdh.n N = LSpan U
mapdh.c C = LCDual K W
mapdh.d D = Base C
mapdh.r R = - C
mapdh.j J = LSpan C
mapdh.k φ K HL W H
mapdhc.f φ F D
mapdh.mn φ M N X = J F
mapdhcl.x φ X V 0 ˙
mapdhe4.y φ Y V 0 ˙
mapdhe.z φ Z V 0 ˙
mapdh.xn φ ¬ X N Y Z
mapdh.yz φ N Y N Z
mapdh.eg φ I X F Y = G
mapdh.ee φ I X F Z = E
Assertion mapdheq4lem φ M N Y - ˙ Z = J G R E

Proof

Step Hyp Ref Expression
1 mapdh.q Q = 0 C
2 mapdh.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
3 mapdh.h H = LHyp K
4 mapdh.m M = mapd K W
5 mapdh.u U = DVecH K W
6 mapdh.v V = Base U
7 mapdh.s - ˙ = - U
8 mapdhc.o 0 ˙ = 0 U
9 mapdh.n N = LSpan U
10 mapdh.c C = LCDual K W
11 mapdh.d D = Base C
12 mapdh.r R = - C
13 mapdh.j J = LSpan C
14 mapdh.k φ K HL W H
15 mapdhc.f φ F D
16 mapdh.mn φ M N X = J F
17 mapdhcl.x φ X V 0 ˙
18 mapdhe4.y φ Y V 0 ˙
19 mapdhe.z φ Z V 0 ˙
20 mapdh.xn φ ¬ X N Y Z
21 mapdh.yz φ N Y N Z
22 mapdh.eg φ I X F Y = G
23 mapdh.ee φ I X F Z = E
24 eqid LSubSp U = LSubSp U
25 3 5 14 dvhlmod φ U LMod
26 18 eldifad φ Y V
27 6 24 9 lspsncl U LMod Y V N Y LSubSp U
28 25 26 27 syl2anc φ N Y LSubSp U
29 19 eldifad φ Z V
30 6 24 9 lspsncl U LMod Z V N Z LSubSp U
31 25 29 30 syl2anc φ N Z LSubSp U
32 eqid LSSum U = LSSum U
33 24 32 lsmcl U LMod N Y LSubSp U N Z LSubSp U N Y LSSum U N Z LSubSp U
34 25 28 31 33 syl3anc φ N Y LSSum U N Z LSubSp U
35 17 eldifad φ X V
36 6 7 lmodvsubcl U LMod X V Y V X - ˙ Y V
37 25 35 26 36 syl3anc φ X - ˙ Y V
38 6 24 9 lspsncl U LMod X - ˙ Y V N X - ˙ Y LSubSp U
39 25 37 38 syl2anc φ N X - ˙ Y LSubSp U
40 6 7 lmodvsubcl U LMod X V Z V X - ˙ Z V
41 25 35 29 40 syl3anc φ X - ˙ Z V
42 6 24 9 lspsncl U LMod X - ˙ Z V N X - ˙ Z LSubSp U
43 25 41 42 syl2anc φ N X - ˙ Z LSubSp U
44 24 32 lsmcl U LMod N X - ˙ Y LSubSp U N X - ˙ Z LSubSp U N X - ˙ Y LSSum U N X - ˙ Z LSubSp U
45 25 39 43 44 syl3anc φ N X - ˙ Y LSSum U N X - ˙ Z LSubSp U
46 3 4 5 24 14 34 45 mapdin φ M N Y LSSum U N Z N X - ˙ Y LSSum U N X - ˙ Z = M N Y LSSum U N Z M N X - ˙ Y LSSum U N X - ˙ Z
47 eqid LSSum C = LSSum C
48 3 4 5 24 32 10 47 14 28 31 mapdlsm φ M N Y LSSum U N Z = M N Y LSSum C M N Z
49 3 5 14 dvhlvec φ U LVec
50 6 8 9 49 26 19 35 21 20 lspindp2 φ N X N Y ¬ Z N X Y
51 50 simpld φ N X N Y
52 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 26 51 mapdhcl φ I X F Y D
53 22 52 eqeltrrd φ G D
54 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 53 51 mapdheq φ I X F Y = G M N Y = J G M N X - ˙ Y = J F R G
55 22 54 mpbid φ M N Y = J G M N X - ˙ Y = J F R G
56 55 simpld φ M N Y = J G
57 6 8 9 49 18 29 35 21 20 lspindp1 φ N X N Z ¬ Y N X Z
58 57 simpld φ N X N Z
59 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 29 58 mapdhcl φ I X F Z D
60 23 59 eqeltrrd φ E D
61 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 60 58 mapdheq φ I X F Z = E M N Z = J E M N X - ˙ Z = J F R E
62 23 61 mpbid φ M N Z = J E M N X - ˙ Z = J F R E
63 62 simpld φ M N Z = J E
64 56 63 oveq12d φ M N Y LSSum C M N Z = J G LSSum C J E
65 48 64 eqtrd φ M N Y LSSum U N Z = J G LSSum C J E
66 3 4 5 24 32 10 47 14 39 43 mapdlsm φ M N X - ˙ Y LSSum U N X - ˙ Z = M N X - ˙ Y LSSum C M N X - ˙ Z
67 55 simprd φ M N X - ˙ Y = J F R G
68 62 simprd φ M N X - ˙ Z = J F R E
69 67 68 oveq12d φ M N X - ˙ Y LSSum C M N X - ˙ Z = J F R G LSSum C J F R E
70 66 69 eqtrd φ M N X - ˙ Y LSSum U N X - ˙ Z = J F R G LSSum C J F R E
71 65 70 ineq12d φ M N Y LSSum U N Z M N X - ˙ Y LSSum U N X - ˙ Z = J G LSSum C J E J F R G LSSum C J F R E
72 46 71 eqtrd φ M N Y LSSum U N Z N X - ˙ Y LSSum U N X - ˙ Z = J G LSSum C J E J F R G LSSum C J F R E
73 6 7 8 32 9 49 35 20 21 18 19 baerlem3 φ N Y - ˙ Z = N Y LSSum U N Z N X - ˙ Y LSSum U N X - ˙ Z
74 73 fveq2d φ M N Y - ˙ Z = M N Y LSSum U N Z N X - ˙ Y LSSum U N X - ˙ Z
75 eqid 0 C = 0 C
76 3 10 14 lcdlvec φ C LVec
77 3 4 5 6 9 10 11 13 14 15 16 35 26 53 56 29 60 63 20 mapdindp φ ¬ F J G E
78 3 4 5 6 9 10 11 13 14 53 56 26 29 60 63 21 mapdncol φ J G J E
79 3 4 5 6 9 10 11 13 14 53 56 8 75 18 mapdn0 φ G D 0 C
80 3 4 5 6 9 10 11 13 14 60 63 8 75 19 mapdn0 φ E D 0 C
81 11 12 75 47 13 76 15 77 78 79 80 baerlem3 φ J G R E = J G LSSum C J E J F R G LSSum C J F R E
82 72 74 81 3eqtr4d φ M N Y - ˙ Z = J G R E