Metamath Proof Explorer


Theorem mapdn0

Description: Transfer nonzero property from domain to range of projectivity mapd . (Contributed by NM, 12-Apr-2015)

Ref Expression
Hypotheses mapdindp.h H=LHypK
mapdindp.m M=mapdKW
mapdindp.u U=DVecHKW
mapdindp.v V=BaseU
mapdindp.n N=LSpanU
mapdindp.c C=LCDualKW
mapdindp.d D=BaseC
mapdindp.j J=LSpanC
mapdindp.k φKHLWH
mapdindp.f φFD
mapdindp.mx φMNX=JF
mapdn0.o 0˙=0U
mapdn0.z Z=0C
mapdn0.x φXV0˙
Assertion mapdn0 φFDZ

Proof

Step Hyp Ref Expression
1 mapdindp.h H=LHypK
2 mapdindp.m M=mapdKW
3 mapdindp.u U=DVecHKW
4 mapdindp.v V=BaseU
5 mapdindp.n N=LSpanU
6 mapdindp.c C=LCDualKW
7 mapdindp.d D=BaseC
8 mapdindp.j J=LSpanC
9 mapdindp.k φKHLWH
10 mapdindp.f φFD
11 mapdindp.mx φMNX=JF
12 mapdn0.o 0˙=0U
13 mapdn0.z Z=0C
14 mapdn0.x φXV0˙
15 eldifsni XV0˙X0˙
16 14 15 syl φX0˙
17 sneq F=ZF=Z
18 17 fveq2d F=ZJF=JZ
19 11 18 sylan9eq φF=ZMNX=JZ
20 1 2 3 12 6 13 9 mapd0 φM0˙=Z
21 1 6 9 lcdlmod φCLMod
22 13 8 lspsn0 CLModJZ=Z
23 21 22 syl φJZ=Z
24 20 23 eqtr4d φM0˙=JZ
25 24 adantr φF=ZM0˙=JZ
26 19 25 eqtr4d φF=ZMNX=M0˙
27 26 ex φF=ZMNX=M0˙
28 eqid LSubSpU=LSubSpU
29 1 3 9 dvhlmod φULMod
30 14 eldifad φXV
31 4 28 5 lspsncl ULModXVNXLSubSpU
32 29 30 31 syl2anc φNXLSubSpU
33 12 28 lsssn0 ULMod0˙LSubSpU
34 29 33 syl φ0˙LSubSpU
35 1 3 28 2 9 32 34 mapd11 φMNX=M0˙NX=0˙
36 4 12 5 lspsneq0 ULModXVNX=0˙X=0˙
37 29 30 36 syl2anc φNX=0˙X=0˙
38 35 37 bitrd φMNX=M0˙X=0˙
39 27 38 sylibd φF=ZX=0˙
40 39 necon3d φX0˙FZ
41 16 40 mpd φFZ
42 eldifsn FDZFDFZ
43 10 41 42 sylanbrc φFDZ