Metamath Proof Explorer


Theorem mapdn0

Description: Transfer nonzero property from domain to range of projectivity mapd . (Contributed by NM, 12-Apr-2015)

Ref Expression
Hypotheses mapdindp.h H = LHyp K
mapdindp.m M = mapd K W
mapdindp.u U = DVecH K W
mapdindp.v V = Base U
mapdindp.n N = LSpan U
mapdindp.c C = LCDual K W
mapdindp.d D = Base C
mapdindp.j J = LSpan C
mapdindp.k φ K HL W H
mapdindp.f φ F D
mapdindp.mx φ M N X = J F
mapdn0.o 0 ˙ = 0 U
mapdn0.z Z = 0 C
mapdn0.x φ X V 0 ˙
Assertion mapdn0 φ F D Z

Proof

Step Hyp Ref Expression
1 mapdindp.h H = LHyp K
2 mapdindp.m M = mapd K W
3 mapdindp.u U = DVecH K W
4 mapdindp.v V = Base U
5 mapdindp.n N = LSpan U
6 mapdindp.c C = LCDual K W
7 mapdindp.d D = Base C
8 mapdindp.j J = LSpan C
9 mapdindp.k φ K HL W H
10 mapdindp.f φ F D
11 mapdindp.mx φ M N X = J F
12 mapdn0.o 0 ˙ = 0 U
13 mapdn0.z Z = 0 C
14 mapdn0.x φ X V 0 ˙
15 eldifsni X V 0 ˙ X 0 ˙
16 14 15 syl φ X 0 ˙
17 sneq F = Z F = Z
18 17 fveq2d F = Z J F = J Z
19 11 18 sylan9eq φ F = Z M N X = J Z
20 1 2 3 12 6 13 9 mapd0 φ M 0 ˙ = Z
21 1 6 9 lcdlmod φ C LMod
22 13 8 lspsn0 C LMod J Z = Z
23 21 22 syl φ J Z = Z
24 20 23 eqtr4d φ M 0 ˙ = J Z
25 24 adantr φ F = Z M 0 ˙ = J Z
26 19 25 eqtr4d φ F = Z M N X = M 0 ˙
27 26 ex φ F = Z M N X = M 0 ˙
28 eqid LSubSp U = LSubSp U
29 1 3 9 dvhlmod φ U LMod
30 14 eldifad φ X V
31 4 28 5 lspsncl U LMod X V N X LSubSp U
32 29 30 31 syl2anc φ N X LSubSp U
33 12 28 lsssn0 U LMod 0 ˙ LSubSp U
34 29 33 syl φ 0 ˙ LSubSp U
35 1 3 28 2 9 32 34 mapd11 φ M N X = M 0 ˙ N X = 0 ˙
36 4 12 5 lspsneq0 U LMod X V N X = 0 ˙ X = 0 ˙
37 29 30 36 syl2anc φ N X = 0 ˙ X = 0 ˙
38 35 37 bitrd φ M N X = M 0 ˙ X = 0 ˙
39 27 38 sylibd φ F = Z X = 0 ˙
40 39 necon3d φ X 0 ˙ F Z
41 16 40 mpd φ F Z
42 eldifsn F D Z F D F Z
43 10 41 42 sylanbrc φ F D Z