Metamath Proof Explorer


Theorem mapdsn

Description: Value of the map defined by df-mapd at the span of a singleton. (Contributed by NM, 16-Feb-2015)

Ref Expression
Hypotheses mapdsn.h H=LHypK
mapdsn.o O=ocHKW
mapdsn.m M=mapdKW
mapdsn.u U=DVecHKW
mapdsn.v V=BaseU
mapdsn.n N=LSpanU
mapdsn.f F=LFnlU
mapdsn.l L=LKerU
mapdsn.k φKHLWH
mapdsn.x φXV
Assertion mapdsn φMNX=fF|OXLf

Proof

Step Hyp Ref Expression
1 mapdsn.h H=LHypK
2 mapdsn.o O=ocHKW
3 mapdsn.m M=mapdKW
4 mapdsn.u U=DVecHKW
5 mapdsn.v V=BaseU
6 mapdsn.n N=LSpanU
7 mapdsn.f F=LFnlU
8 mapdsn.l L=LKerU
9 mapdsn.k φKHLWH
10 mapdsn.x φXV
11 eqid LSubSpU=LSubSpU
12 1 4 9 dvhlmod φULMod
13 5 11 6 lspsncl ULModXVNXLSubSpU
14 12 10 13 syl2anc φNXLSubSpU
15 1 4 11 7 8 2 3 9 14 mapdval φMNX=fF|OOLf=LfOLfNX
16 9 ad2antrr φfFOOLf=LfOLfNXKHLWH
17 10 snssd φXV
18 5 6 lspssv ULModXVNXV
19 12 17 18 syl2anc φNXV
20 19 ad2antrr φfFOOLf=LfOLfNXNXV
21 simprr φfFOOLf=LfOLfNXOLfNX
22 1 4 5 2 dochss KHLWHNXVOLfNXONXOOLf
23 16 20 21 22 syl3anc φfFOOLf=LfOLfNXONXOOLf
24 1 4 2 5 6 9 17 dochocsp φONX=OX
25 24 ad2antrr φfFOOLf=LfOLfNXONX=OX
26 simprl φfFOOLf=LfOLfNXOOLf=Lf
27 23 25 26 3sstr3d φfFOOLf=LfOLfNXOXLf
28 9 ad2antrr φfFOXLfKHLWH
29 simplr φfFOXLffF
30 10 ad2antrr φfFOXLfXV
31 simpr φfFOXLfOXLf
32 1 2 4 5 7 8 28 29 30 31 lcfl9a φfFOXLfOOLf=Lf
33 12 ad2antrr φfFOXLfULMod
34 5 7 8 33 29 lkrssv φfFOXLfLfV
35 1 4 5 2 dochss KHLWHLfVOXLfOLfOOX
36 28 34 31 35 syl3anc φfFOXLfOLfOOX
37 1 4 2 5 6 9 10 dochocsn φOOX=NX
38 37 ad2antrr φfFOXLfOOX=NX
39 36 38 sseqtrd φfFOXLfOLfNX
40 32 39 jca φfFOXLfOOLf=LfOLfNX
41 27 40 impbida φfFOOLf=LfOLfNXOXLf
42 41 rabbidva φfF|OOLf=LfOLfNX=fF|OXLf
43 15 42 eqtrd φMNX=fF|OXLf