Metamath Proof Explorer


Theorem mapdunirnN

Description: Union of the range of the map defined by df-mapd . (Contributed by NM, 13-Mar-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdrn.h H = LHyp K
mapdrn.o O = ocH K W
mapdrn.m M = mapd K W
mapdrn.u U = DVecH K W
mapdrn.f F = LFnl U
mapdrn.l L = LKer U
mapdunirn.c C = g F | O O L g = L g
mapdunirn.k φ K HL W H
Assertion mapdunirnN φ ran M = C

Proof

Step Hyp Ref Expression
1 mapdrn.h H = LHyp K
2 mapdrn.o O = ocH K W
3 mapdrn.m M = mapd K W
4 mapdrn.u U = DVecH K W
5 mapdrn.f F = LFnl U
6 mapdrn.l L = LKer U
7 mapdunirn.c C = g F | O O L g = L g
8 mapdunirn.k φ K HL W H
9 eqid LDual U = LDual U
10 eqid LSubSp LDual U = LSubSp LDual U
11 1 2 3 4 5 6 9 10 7 8 mapdrn φ ran M = LSubSp LDual U 𝒫 C
12 11 unieqd φ ran M = LSubSp LDual U 𝒫 C
13 uniin LSubSp LDual U 𝒫 C LSubSp LDual U 𝒫 C
14 eqid Base LDual U = Base LDual U
15 1 4 8 dvhlmod φ U LMod
16 9 15 lduallmod φ LDual U LMod
17 14 10 16 lssuni φ LSubSp LDual U = Base LDual U
18 5 9 14 15 ldualvbase φ Base LDual U = F
19 17 18 eqtrd φ LSubSp LDual U = F
20 unipw 𝒫 C = C
21 20 a1i φ 𝒫 C = C
22 19 21 ineq12d φ LSubSp LDual U 𝒫 C = F C
23 ssrab2 g F | O O L g = L g F
24 7 23 eqsstri C F
25 sseqin2 C F F C = C
26 24 25 mpbi F C = C
27 26 a1i φ F C = C
28 22 27 eqtrd φ LSubSp LDual U 𝒫 C = C
29 13 28 sseqtrid φ LSubSp LDual U 𝒫 C C
30 1 4 2 5 6 9 10 7 8 lclkr φ C LSubSp LDual U
31 5 fvexi F V
32 7 31 rabex2 C V
33 32 pwid C 𝒫 C
34 33 a1i φ C 𝒫 C
35 30 34 elind φ C LSubSp LDual U 𝒫 C
36 elssuni C LSubSp LDual U 𝒫 C C LSubSp LDual U 𝒫 C
37 35 36 syl φ C LSubSp LDual U 𝒫 C
38 29 37 eqssd φ LSubSp LDual U 𝒫 C = C
39 12 38 eqtrd φ ran M = C