Metamath Proof Explorer


Theorem mapdunirnN

Description: Union of the range of the map defined by df-mapd . (Contributed by NM, 13-Mar-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdrn.h H=LHypK
mapdrn.o O=ocHKW
mapdrn.m M=mapdKW
mapdrn.u U=DVecHKW
mapdrn.f F=LFnlU
mapdrn.l L=LKerU
mapdunirn.c C=gF|OOLg=Lg
mapdunirn.k φKHLWH
Assertion mapdunirnN φranM=C

Proof

Step Hyp Ref Expression
1 mapdrn.h H=LHypK
2 mapdrn.o O=ocHKW
3 mapdrn.m M=mapdKW
4 mapdrn.u U=DVecHKW
5 mapdrn.f F=LFnlU
6 mapdrn.l L=LKerU
7 mapdunirn.c C=gF|OOLg=Lg
8 mapdunirn.k φKHLWH
9 eqid LDualU=LDualU
10 eqid LSubSpLDualU=LSubSpLDualU
11 1 2 3 4 5 6 9 10 7 8 mapdrn φranM=LSubSpLDualU𝒫C
12 11 unieqd φranM=LSubSpLDualU𝒫C
13 uniin LSubSpLDualU𝒫CLSubSpLDualU𝒫C
14 eqid BaseLDualU=BaseLDualU
15 1 4 8 dvhlmod φULMod
16 9 15 lduallmod φLDualULMod
17 14 10 16 lssuni φLSubSpLDualU=BaseLDualU
18 5 9 14 15 ldualvbase φBaseLDualU=F
19 17 18 eqtrd φLSubSpLDualU=F
20 unipw 𝒫C=C
21 20 a1i φ𝒫C=C
22 19 21 ineq12d φLSubSpLDualU𝒫C=FC
23 ssrab2 gF|OOLg=LgF
24 7 23 eqsstri CF
25 sseqin2 CFFC=C
26 24 25 mpbi FC=C
27 26 a1i φFC=C
28 22 27 eqtrd φLSubSpLDualU𝒫C=C
29 13 28 sseqtrid φLSubSpLDualU𝒫CC
30 1 4 2 5 6 9 10 7 8 lclkr φCLSubSpLDualU
31 5 fvexi FV
32 7 31 rabex2 CV
33 32 pwid C𝒫C
34 33 a1i φC𝒫C
35 30 34 elind φCLSubSpLDualU𝒫C
36 elssuni CLSubSpLDualU𝒫CCLSubSpLDualU𝒫C
37 35 36 syl φCLSubSpLDualU𝒫C
38 29 37 eqssd φLSubSpLDualU𝒫C=C
39 12 38 eqtrd φranM=C