Description: Finite commutative sums in a matrix algebra are taken componentwise. (Contributed by AV, 26-Sep-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | matgsum.a | |
|
matgsum.b | |
||
matgsum.z | |
||
matgsum.i | |
||
matgsum.j | |
||
matgsum.r | |
||
matgsum.f | |
||
matgsum.w | |
||
Assertion | matgsum | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | matgsum.a | |
|
2 | matgsum.b | |
|
3 | matgsum.z | |
|
4 | matgsum.i | |
|
5 | matgsum.j | |
|
6 | matgsum.r | |
|
7 | matgsum.f | |
|
8 | matgsum.w | |
|
9 | 5 | mptexd | |
10 | 1 | ovexi | |
11 | 10 | a1i | |
12 | ovexd | |
|
13 | eqid | |
|
14 | 1 13 | matbas | |
15 | 4 6 14 | syl2anc | |
16 | 15 | eqcomd | |
17 | 1 13 | matplusg | |
18 | 4 6 17 | syl2anc | |
19 | 18 | eqcomd | |
20 | 9 11 12 16 19 | gsumpropd | |
21 | mpompts | |
|
22 | 21 | a1i | |
23 | 22 | mpteq2dv | |
24 | 23 | oveq2d | |
25 | eqid | |
|
26 | eqid | |
|
27 | xpfi | |
|
28 | 4 4 27 | syl2anc | |
29 | 7 2 | eleqtrdi | |
30 | 21 | eqcomi | |
31 | 30 | a1i | |
32 | 4 6 | jca | |
33 | 32 | adantr | |
34 | 33 14 | syl | |
35 | 29 31 34 | 3eltr4d | |
36 | 30 | mpteq2i | |
37 | 3 | eqcomi | |
38 | 8 36 37 | 3brtr4g | |
39 | 1 13 | mat0 | |
40 | 4 6 39 | syl2anc | |
41 | 38 40 | breqtrrd | |
42 | 13 25 26 28 5 6 35 41 | frlmgsum | |
43 | 24 42 | eqtrd | |
44 | fvex | |
|
45 | csbov2g | |
|
46 | 44 45 | ax-mp | |
47 | 46 | csbeq2i | |
48 | fvex | |
|
49 | csbov2g | |
|
50 | 48 49 | ax-mp | |
51 | csbmpt2 | |
|
52 | 44 51 | ax-mp | |
53 | 52 | csbeq2i | |
54 | csbmpt2 | |
|
55 | 48 54 | ax-mp | |
56 | 53 55 | eqtri | |
57 | 56 | oveq2i | |
58 | 47 50 57 | 3eqtrri | |
59 | 58 | mpteq2i | |
60 | mpompts | |
|
61 | 59 60 | eqtr4i | |
62 | 61 | a1i | |
63 | 20 43 62 | 3eqtrd | |