Metamath Proof Explorer


Theorem matgsum

Description: Finite commutative sums in a matrix algebra are taken componentwise. (Contributed by AV, 26-Sep-2019)

Ref Expression
Hypotheses matgsum.a A=NMatR
matgsum.b B=BaseA
matgsum.z 0˙=0A
matgsum.i φNFin
matgsum.j φJW
matgsum.r φRRing
matgsum.f φyJiN,jNUB
matgsum.w φfinSupp0˙yJiN,jNU
Assertion matgsum φAyJiN,jNU=iN,jNRyJU

Proof

Step Hyp Ref Expression
1 matgsum.a A=NMatR
2 matgsum.b B=BaseA
3 matgsum.z 0˙=0A
4 matgsum.i φNFin
5 matgsum.j φJW
6 matgsum.r φRRing
7 matgsum.f φyJiN,jNUB
8 matgsum.w φfinSupp0˙yJiN,jNU
9 5 mptexd φyJiN,jNUV
10 1 ovexi AV
11 10 a1i φAV
12 ovexd φRfreeLModN×NV
13 eqid RfreeLModN×N=RfreeLModN×N
14 1 13 matbas NFinRRingBaseRfreeLModN×N=BaseA
15 4 6 14 syl2anc φBaseRfreeLModN×N=BaseA
16 15 eqcomd φBaseA=BaseRfreeLModN×N
17 1 13 matplusg NFinRRing+RfreeLModN×N=+A
18 4 6 17 syl2anc φ+RfreeLModN×N=+A
19 18 eqcomd φ+A=+RfreeLModN×N
20 9 11 12 16 19 gsumpropd φAyJiN,jNU=RfreeLModN×NyJiN,jNU
21 mpompts iN,jNU=zN×N1stz/i2ndz/jU
22 21 a1i φiN,jNU=zN×N1stz/i2ndz/jU
23 22 mpteq2dv φyJiN,jNU=yJzN×N1stz/i2ndz/jU
24 23 oveq2d φRfreeLModN×NyJiN,jNU=RfreeLModN×NyJzN×N1stz/i2ndz/jU
25 eqid BaseRfreeLModN×N=BaseRfreeLModN×N
26 eqid 0RfreeLModN×N=0RfreeLModN×N
27 xpfi NFinNFinN×NFin
28 4 4 27 syl2anc φN×NFin
29 7 2 eleqtrdi φyJiN,jNUBaseA
30 21 eqcomi zN×N1stz/i2ndz/jU=iN,jNU
31 30 a1i φyJzN×N1stz/i2ndz/jU=iN,jNU
32 4 6 jca φNFinRRing
33 32 adantr φyJNFinRRing
34 33 14 syl φyJBaseRfreeLModN×N=BaseA
35 29 31 34 3eltr4d φyJzN×N1stz/i2ndz/jUBaseRfreeLModN×N
36 30 mpteq2i yJzN×N1stz/i2ndz/jU=yJiN,jNU
37 3 eqcomi 0A=0˙
38 8 36 37 3brtr4g φfinSupp0AyJzN×N1stz/i2ndz/jU
39 1 13 mat0 NFinRRing0RfreeLModN×N=0A
40 4 6 39 syl2anc φ0RfreeLModN×N=0A
41 38 40 breqtrrd φfinSupp0RfreeLModN×NyJzN×N1stz/i2ndz/jU
42 13 25 26 28 5 6 35 41 frlmgsum φRfreeLModN×NyJzN×N1stz/i2ndz/jU=zN×NRyJ1stz/i2ndz/jU
43 24 42 eqtrd φRfreeLModN×NyJiN,jNU=zN×NRyJ1stz/i2ndz/jU
44 fvex 2ndzV
45 csbov2g 2ndzV2ndz/jRyJU=R2ndz/jyJU
46 44 45 ax-mp 2ndz/jRyJU=R2ndz/jyJU
47 46 csbeq2i 1stz/i2ndz/jRyJU=1stz/iR2ndz/jyJU
48 fvex 1stzV
49 csbov2g 1stzV1stz/iR2ndz/jyJU=R1stz/i2ndz/jyJU
50 48 49 ax-mp 1stz/iR2ndz/jyJU=R1stz/i2ndz/jyJU
51 csbmpt2 2ndzV2ndz/jyJU=yJ2ndz/jU
52 44 51 ax-mp 2ndz/jyJU=yJ2ndz/jU
53 52 csbeq2i 1stz/i2ndz/jyJU=1stz/iyJ2ndz/jU
54 csbmpt2 1stzV1stz/iyJ2ndz/jU=yJ1stz/i2ndz/jU
55 48 54 ax-mp 1stz/iyJ2ndz/jU=yJ1stz/i2ndz/jU
56 53 55 eqtri 1stz/i2ndz/jyJU=yJ1stz/i2ndz/jU
57 56 oveq2i R1stz/i2ndz/jyJU=RyJ1stz/i2ndz/jU
58 47 50 57 3eqtrri RyJ1stz/i2ndz/jU=1stz/i2ndz/jRyJU
59 58 mpteq2i zN×NRyJ1stz/i2ndz/jU=zN×N1stz/i2ndz/jRyJU
60 mpompts iN,jNRyJU=zN×N1stz/i2ndz/jRyJU
61 59 60 eqtr4i zN×NRyJ1stz/i2ndz/jU=iN,jNRyJU
62 61 a1i φzN×NRyJ1stz/i2ndz/jU=iN,jNRyJU
63 20 43 62 3eqtrd φAyJiN,jNU=iN,jNRyJU