| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbfmul.1 |
|
| 2 |
|
mbfmul.2 |
|
| 3 |
|
mbfmul.3 |
|
| 4 |
|
mbfmul.4 |
|
| 5 |
|
mbfmul.5 |
|
| 6 |
|
mbfmul.6 |
|
| 7 |
|
mbfmul.7 |
|
| 8 |
|
mbfmul.8 |
|
| 9 |
3
|
ffnd |
|
| 10 |
4
|
ffnd |
|
| 11 |
3
|
fdmd |
|
| 12 |
|
mbfdm |
|
| 13 |
1 12
|
syl |
|
| 14 |
11 13
|
eqeltrrd |
|
| 15 |
|
inidm |
|
| 16 |
|
eqidd |
|
| 17 |
|
eqidd |
|
| 18 |
9 10 14 14 15 16 17
|
offval |
|
| 19 |
|
nnuz |
|
| 20 |
|
1zzd |
|
| 21 |
|
1zzd |
|
| 22 |
|
nnex |
|
| 23 |
22
|
mptex |
|
| 24 |
23
|
a1i |
|
| 25 |
5
|
ffvelcdmda |
|
| 26 |
|
i1ff |
|
| 27 |
25 26
|
syl |
|
| 28 |
27
|
adantlr |
|
| 29 |
|
mblss |
|
| 30 |
14 29
|
syl |
|
| 31 |
30
|
sselda |
|
| 32 |
31
|
adantr |
|
| 33 |
28 32
|
ffvelcdmd |
|
| 34 |
33
|
recnd |
|
| 35 |
34
|
fmpttd |
|
| 36 |
35
|
ffvelcdmda |
|
| 37 |
7
|
ffvelcdmda |
|
| 38 |
|
i1ff |
|
| 39 |
37 38
|
syl |
|
| 40 |
39
|
adantlr |
|
| 41 |
40 32
|
ffvelcdmd |
|
| 42 |
41
|
recnd |
|
| 43 |
42
|
fmpttd |
|
| 44 |
43
|
ffvelcdmda |
|
| 45 |
|
fveq2 |
|
| 46 |
45
|
fveq1d |
|
| 47 |
|
fveq2 |
|
| 48 |
47
|
fveq1d |
|
| 49 |
46 48
|
oveq12d |
|
| 50 |
|
eqid |
|
| 51 |
|
ovex |
|
| 52 |
49 50 51
|
fvmpt |
|
| 53 |
52
|
adantl |
|
| 54 |
|
eqid |
|
| 55 |
|
fvex |
|
| 56 |
46 54 55
|
fvmpt |
|
| 57 |
|
eqid |
|
| 58 |
|
fvex |
|
| 59 |
48 57 58
|
fvmpt |
|
| 60 |
56 59
|
oveq12d |
|
| 61 |
60
|
adantl |
|
| 62 |
53 61
|
eqtr4d |
|
| 63 |
19 21 6 24 8 36 44 62
|
climmul |
|
| 64 |
30
|
adantr |
|
| 65 |
64
|
resmptd |
|
| 66 |
27
|
ffnd |
|
| 67 |
39
|
ffnd |
|
| 68 |
|
reex |
|
| 69 |
68
|
a1i |
|
| 70 |
|
inidm |
|
| 71 |
|
eqidd |
|
| 72 |
|
eqidd |
|
| 73 |
66 67 69 69 70 71 72
|
offval |
|
| 74 |
25 37
|
i1fmul |
|
| 75 |
|
i1fmbf |
|
| 76 |
74 75
|
syl |
|
| 77 |
73 76
|
eqeltrrd |
|
| 78 |
14
|
adantr |
|
| 79 |
|
mbfres |
|
| 80 |
77 78 79
|
syl2anc |
|
| 81 |
65 80
|
eqeltrrd |
|
| 82 |
|
ovex |
|
| 83 |
82
|
a1i |
|
| 84 |
19 20 63 81 83
|
mbflim |
|
| 85 |
18 84
|
eqeltrd |
|