Metamath Proof Explorer


Theorem mbfmullem2

Description: Lemma for mbfmul . (Contributed by Mario Carneiro, 7-Sep-2014)

Ref Expression
Hypotheses mbfmul.1 φFMblFn
mbfmul.2 φGMblFn
mbfmul.3 φF:A
mbfmul.4 φG:A
mbfmul.5 φP:dom1
mbfmul.6 φxAnPnxFx
mbfmul.7 φQ:dom1
mbfmul.8 φxAnQnxGx
Assertion mbfmullem2 φF×fGMblFn

Proof

Step Hyp Ref Expression
1 mbfmul.1 φFMblFn
2 mbfmul.2 φGMblFn
3 mbfmul.3 φF:A
4 mbfmul.4 φG:A
5 mbfmul.5 φP:dom1
6 mbfmul.6 φxAnPnxFx
7 mbfmul.7 φQ:dom1
8 mbfmul.8 φxAnQnxGx
9 3 ffnd φFFnA
10 4 ffnd φGFnA
11 3 fdmd φdomF=A
12 mbfdm FMblFndomFdomvol
13 1 12 syl φdomFdomvol
14 11 13 eqeltrrd φAdomvol
15 inidm AA=A
16 eqidd φxAFx=Fx
17 eqidd φxAGx=Gx
18 9 10 14 14 15 16 17 offval φF×fG=xAFxGx
19 nnuz =1
20 1zzd φ1
21 1zzd φxA1
22 nnex V
23 22 mptex nPnxQnxV
24 23 a1i φxAnPnxQnxV
25 5 ffvelcdmda φnPndom1
26 i1ff Pndom1Pn:
27 25 26 syl φnPn:
28 27 adantlr φxAnPn:
29 mblss AdomvolA
30 14 29 syl φA
31 30 sselda φxAx
32 31 adantr φxAnx
33 28 32 ffvelcdmd φxAnPnx
34 33 recnd φxAnPnx
35 34 fmpttd φxAnPnx:
36 35 ffvelcdmda φxAknPnxk
37 7 ffvelcdmda φnQndom1
38 i1ff Qndom1Qn:
39 37 38 syl φnQn:
40 39 adantlr φxAnQn:
41 40 32 ffvelcdmd φxAnQnx
42 41 recnd φxAnQnx
43 42 fmpttd φxAnQnx:
44 43 ffvelcdmda φxAknQnxk
45 fveq2 n=kPn=Pk
46 45 fveq1d n=kPnx=Pkx
47 fveq2 n=kQn=Qk
48 47 fveq1d n=kQnx=Qkx
49 46 48 oveq12d n=kPnxQnx=PkxQkx
50 eqid nPnxQnx=nPnxQnx
51 ovex PkxQkxV
52 49 50 51 fvmpt knPnxQnxk=PkxQkx
53 52 adantl φxAknPnxQnxk=PkxQkx
54 eqid nPnx=nPnx
55 fvex PkxV
56 46 54 55 fvmpt knPnxk=Pkx
57 eqid nQnx=nQnx
58 fvex QkxV
59 48 57 58 fvmpt knQnxk=Qkx
60 56 59 oveq12d knPnxknQnxk=PkxQkx
61 60 adantl φxAknPnxknQnxk=PkxQkx
62 53 61 eqtr4d φxAknPnxQnxk=nPnxknQnxk
63 19 21 6 24 8 36 44 62 climmul φxAnPnxQnxFxGx
64 30 adantr φnA
65 64 resmptd φnxPnxQnxA=xAPnxQnx
66 27 ffnd φnPnFn
67 39 ffnd φnQnFn
68 reex V
69 68 a1i φnV
70 inidm =
71 eqidd φnxPnx=Pnx
72 eqidd φnxQnx=Qnx
73 66 67 69 69 70 71 72 offval φnPn×fQn=xPnxQnx
74 25 37 i1fmul φnPn×fQndom1
75 i1fmbf Pn×fQndom1Pn×fQnMblFn
76 74 75 syl φnPn×fQnMblFn
77 73 76 eqeltrrd φnxPnxQnxMblFn
78 14 adantr φnAdomvol
79 mbfres xPnxQnxMblFnAdomvolxPnxQnxAMblFn
80 77 78 79 syl2anc φnxPnxQnxAMblFn
81 65 80 eqeltrrd φnxAPnxQnxMblFn
82 ovex PnxQnxV
83 82 a1i φnxAPnxQnxV
84 19 20 63 81 83 mbflim φxAFxGxMblFn
85 18 84 eqeltrd φF×fGMblFn