Metamath Proof Explorer


Theorem mbfsub

Description: The difference of two measurable functions is measurable. (Contributed by Mario Carneiro, 5-Sep-2014)

Ref Expression
Hypotheses mbfadd.1 φFMblFn
mbfadd.2 φGMblFn
Assertion mbfsub φFfGMblFn

Proof

Step Hyp Ref Expression
1 mbfadd.1 φFMblFn
2 mbfadd.2 φGMblFn
3 mbff FMblFnF:domF
4 1 3 syl φF:domF
5 elinel1 xdomFdomGxdomF
6 ffvelcdm F:domFxdomFFx
7 4 5 6 syl2an φxdomFdomGFx
8 mbff GMblFnG:domG
9 2 8 syl φG:domG
10 elinel2 xdomFdomGxdomG
11 ffvelcdm G:domGxdomGGx
12 9 10 11 syl2an φxdomFdomGGx
13 7 12 negsubd φxdomFdomGFx+Gx=FxGx
14 13 eqcomd φxdomFdomGFxGx=Fx+Gx
15 14 mpteq2dva φxdomFdomGFxGx=xdomFdomGFx+Gx
16 4 ffnd φFFndomF
17 9 ffnd φGFndomG
18 mbfdm FMblFndomFdomvol
19 1 18 syl φdomFdomvol
20 mbfdm GMblFndomGdomvol
21 2 20 syl φdomGdomvol
22 eqid domFdomG=domFdomG
23 eqidd φxdomFFx=Fx
24 eqidd φxdomGGx=Gx
25 16 17 19 21 22 23 24 offval φFfG=xdomFdomGFxGx
26 inmbl domFdomvoldomGdomvoldomFdomGdomvol
27 19 21 26 syl2anc φdomFdomGdomvol
28 12 negcld φxdomFdomGGx
29 eqidd φxdomFdomGFx=xdomFdomGFx
30 eqidd φxdomFdomGGx=xdomFdomGGx
31 27 7 28 29 30 offval2 φxdomFdomGFx+fxdomFdomGGx=xdomFdomGFx+Gx
32 15 25 31 3eqtr4d φFfG=xdomFdomGFx+fxdomFdomGGx
33 inss1 domFdomGdomF
34 resmpt domFdomGdomFxdomFFxdomFdomG=xdomFdomGFx
35 33 34 mp1i φxdomFFxdomFdomG=xdomFdomGFx
36 4 feqmptd φF=xdomFFx
37 36 1 eqeltrrd φxdomFFxMblFn
38 mbfres xdomFFxMblFndomFdomGdomvolxdomFFxdomFdomGMblFn
39 37 27 38 syl2anc φxdomFFxdomFdomGMblFn
40 35 39 eqeltrrd φxdomFdomGFxMblFn
41 inss2 domFdomGdomG
42 resmpt domFdomGdomGxdomGGxdomFdomG=xdomFdomGGx
43 41 42 mp1i φxdomGGxdomFdomG=xdomFdomGGx
44 9 feqmptd φG=xdomGGx
45 44 2 eqeltrrd φxdomGGxMblFn
46 mbfres xdomGGxMblFndomFdomGdomvolxdomGGxdomFdomGMblFn
47 45 27 46 syl2anc φxdomGGxdomFdomGMblFn
48 43 47 eqeltrrd φxdomFdomGGxMblFn
49 12 48 mbfneg φxdomFdomGGxMblFn
50 40 49 mbfadd φxdomFdomGFx+fxdomFdomGGxMblFn
51 32 50 eqeltrd φFfGMblFn