Metamath Proof Explorer


Theorem mdetlap

Description: Laplace expansion of the determinant of a square matrix. (Contributed by Thierry Arnoux, 19-Aug-2020)

Ref Expression
Hypotheses madjusmdet.b B=BaseA
madjusmdet.a A=1NMatR
madjusmdet.d D=1NmaDetR
madjusmdet.k K=1NmaAdjuR
madjusmdet.t ·˙=R
madjusmdet.z Z=ℤRHomR
madjusmdet.e E=1N1maDetR
madjusmdet.n φN
madjusmdet.r φRCRing
madjusmdet.i φI1N
madjusmdet.j φJ1N
madjusmdet.m φMB
Assertion mdetlap φDM=Rj=1NZ1I+j·˙IMj·˙EIsubMat1Mj

Proof

Step Hyp Ref Expression
1 madjusmdet.b B=BaseA
2 madjusmdet.a A=1NMatR
3 madjusmdet.d D=1NmaDetR
4 madjusmdet.k K=1NmaAdjuR
5 madjusmdet.t ·˙=R
6 madjusmdet.z Z=ℤRHomR
7 madjusmdet.e E=1N1maDetR
8 madjusmdet.n φN
9 madjusmdet.r φRCRing
10 madjusmdet.i φI1N
11 madjusmdet.j φJ1N
12 madjusmdet.m φMB
13 2 1 3 4 5 mdetlap1 RCRingMBI1NDM=Rj=1NIMj·˙jKMI
14 9 12 10 13 syl3anc φDM=Rj=1NIMj·˙jKMI
15 8 adantr φj1NN
16 9 adantr φj1NRCRing
17 10 adantr φj1NI1N
18 simpr φj1Nj1N
19 12 adantr φj1NMB
20 1 2 3 4 5 6 7 15 16 17 18 19 madjusmdet φj1NjKMI=Z1I+j·˙EIsubMat1Mj
21 20 oveq2d φj1NIMj·˙jKMI=IMj·˙Z1I+j·˙EIsubMat1Mj
22 eqid BaseR=BaseR
23 2 22 1 17 18 19 matecld φj1NIMjBaseR
24 crngring RCRingRRing
25 9 24 syl φRRing
26 6 zrhrhm RRingZringRingHomR
27 zringbas =Basering
28 27 22 rhmf ZringRingHomRZ:BaseR
29 25 26 28 3syl φZ:BaseR
30 29 adantr φj1NZ:BaseR
31 1zzd φj1N1
32 31 znegcld φj1N1
33 fz1ssnn 1N
34 33 17 sselid φj1NI
35 33 18 sselid φj1Nj
36 34 35 nnaddcld φj1NI+j
37 36 nnnn0d φj1NI+j0
38 zexpcl 1I+j01I+j
39 32 37 38 syl2anc φj1N1I+j
40 30 39 ffvelcdmd φj1NZ1I+jBaseR
41 22 5 crngcom RCRingIMjBaseRZ1I+jBaseRIMj·˙Z1I+j=Z1I+j·˙IMj
42 16 23 40 41 syl3anc φj1NIMj·˙Z1I+j=Z1I+j·˙IMj
43 42 oveq1d φj1NIMj·˙Z1I+j·˙EIsubMat1Mj=Z1I+j·˙IMj·˙EIsubMat1Mj
44 16 24 syl φj1NRRing
45 eqid Base1N1MatR=Base1N1MatR
46 eqid IsubMat1Mj=IsubMat1Mj
47 2 1 45 46 15 17 18 19 smatcl φj1NIsubMat1MjBase1N1MatR
48 eqid 1N1MatR=1N1MatR
49 7 48 45 22 mdetcl RCRingIsubMat1MjBase1N1MatREIsubMat1MjBaseR
50 16 47 49 syl2anc φj1NEIsubMat1MjBaseR
51 22 5 ringass RRingIMjBaseRZ1I+jBaseREIsubMat1MjBaseRIMj·˙Z1I+j·˙EIsubMat1Mj=IMj·˙Z1I+j·˙EIsubMat1Mj
52 44 23 40 50 51 syl13anc φj1NIMj·˙Z1I+j·˙EIsubMat1Mj=IMj·˙Z1I+j·˙EIsubMat1Mj
53 22 5 ringass RRingZ1I+jBaseRIMjBaseREIsubMat1MjBaseRZ1I+j·˙IMj·˙EIsubMat1Mj=Z1I+j·˙IMj·˙EIsubMat1Mj
54 44 40 23 50 53 syl13anc φj1NZ1I+j·˙IMj·˙EIsubMat1Mj=Z1I+j·˙IMj·˙EIsubMat1Mj
55 43 52 54 3eqtr3d φj1NIMj·˙Z1I+j·˙EIsubMat1Mj=Z1I+j·˙IMj·˙EIsubMat1Mj
56 21 55 eqtrd φj1NIMj·˙jKMI=Z1I+j·˙IMj·˙EIsubMat1Mj
57 56 mpteq2dva φj1NIMj·˙jKMI=j1NZ1I+j·˙IMj·˙EIsubMat1Mj
58 57 oveq2d φRj=1NIMj·˙jKMI=Rj=1NZ1I+j·˙IMj·˙EIsubMat1Mj
59 14 58 eqtrd φDM=Rj=1NZ1I+j·˙IMj·˙EIsubMat1Mj