Description: Laplace expansion of the determinant of a square matrix. (Contributed by Thierry Arnoux, 19-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | madjusmdet.b | |
|
madjusmdet.a | |
||
madjusmdet.d | |
||
madjusmdet.k | |
||
madjusmdet.t | |
||
madjusmdet.z | |
||
madjusmdet.e | |
||
madjusmdet.n | |
||
madjusmdet.r | |
||
madjusmdet.i | |
||
madjusmdet.j | |
||
madjusmdet.m | |
||
Assertion | mdetlap | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | madjusmdet.b | |
|
2 | madjusmdet.a | |
|
3 | madjusmdet.d | |
|
4 | madjusmdet.k | |
|
5 | madjusmdet.t | |
|
6 | madjusmdet.z | |
|
7 | madjusmdet.e | |
|
8 | madjusmdet.n | |
|
9 | madjusmdet.r | |
|
10 | madjusmdet.i | |
|
11 | madjusmdet.j | |
|
12 | madjusmdet.m | |
|
13 | 2 1 3 4 5 | mdetlap1 | |
14 | 9 12 10 13 | syl3anc | |
15 | 8 | adantr | |
16 | 9 | adantr | |
17 | 10 | adantr | |
18 | simpr | |
|
19 | 12 | adantr | |
20 | 1 2 3 4 5 6 7 15 16 17 18 19 | madjusmdet | |
21 | 20 | oveq2d | |
22 | eqid | |
|
23 | 2 22 1 17 18 19 | matecld | |
24 | crngring | |
|
25 | 9 24 | syl | |
26 | 6 | zrhrhm | |
27 | zringbas | |
|
28 | 27 22 | rhmf | |
29 | 25 26 28 | 3syl | |
30 | 29 | adantr | |
31 | 1zzd | |
|
32 | 31 | znegcld | |
33 | fz1ssnn | |
|
34 | 33 17 | sselid | |
35 | 33 18 | sselid | |
36 | 34 35 | nnaddcld | |
37 | 36 | nnnn0d | |
38 | zexpcl | |
|
39 | 32 37 38 | syl2anc | |
40 | 30 39 | ffvelcdmd | |
41 | 22 5 | crngcom | |
42 | 16 23 40 41 | syl3anc | |
43 | 42 | oveq1d | |
44 | 16 24 | syl | |
45 | eqid | |
|
46 | eqid | |
|
47 | 2 1 45 46 15 17 18 19 | smatcl | |
48 | eqid | |
|
49 | 7 48 45 22 | mdetcl | |
50 | 16 47 49 | syl2anc | |
51 | 22 5 | ringass | |
52 | 44 23 40 50 51 | syl13anc | |
53 | 22 5 | ringass | |
54 | 44 40 23 50 53 | syl13anc | |
55 | 43 52 54 | 3eqtr3d | |
56 | 21 55 | eqtrd | |
57 | 56 | mpteq2dva | |
58 | 57 | oveq2d | |
59 | 14 58 | eqtrd | |