Metamath Proof Explorer


Theorem mdexchi

Description: An exchange lemma for modular pairs. Lemma 1.6 of MaedaMaeda p. 2. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses mdexch.1 AC
mdexch.2 BC
mdexch.3 CC
Assertion mdexchi A𝑀BC𝑀ABCABACA𝑀BCAB=AB

Proof

Step Hyp Ref Expression
1 mdexch.1 AC
2 mdexch.2 BC
3 mdexch.3 CC
4 chjass CCACxCCAx=CAx
5 3 1 4 mp3an12 xCCAx=CAx
6 3 1 chjcli CAC
7 chjcom xCCACxCA=CAx
8 6 7 mpan2 xCxCA=CAx
9 chjcl ACxCAxC
10 1 9 mpan xCAxC
11 chjcom AxCCCAxC=CAx
12 10 3 11 sylancl xCAxC=CAx
13 5 8 12 3eqtr4d xCxCA=AxC
14 13 ineq1d xCxCAB=AxCB
15 inass AxCABB=AxCABB
16 incom ABB=BAB
17 1 2 chjcomi AB=BA
18 17 ineq2i BAB=BBA
19 2 1 chabs2i BBA=B
20 18 19 eqtri BAB=B
21 16 20 eqtri ABB=B
22 21 ineq2i AxCABB=AxCB
23 15 22 eqtri AxCABB=AxCB
24 14 23 eqtr4di xCxCAB=AxCABB
25 24 ad2antrr xCxBC𝑀ABCABAxCAB=AxCABB
26 chlej2 xCBCACxBAxAB
27 26 ex xCBCACxBAxAB
28 2 1 27 mp3an23 xCxBAxAB
29 1 2 chjcli ABC
30 mdi CCABCAxCC𝑀ABAxABAxCAB=AxCAB
31 30 exp32 CCABCAxCC𝑀ABAxABAxCAB=AxCAB
32 3 29 31 mp3an12 AxCC𝑀ABAxABAxCAB=AxCAB
33 10 32 syl xCC𝑀ABAxABAxCAB=AxCAB
34 33 com23 xCAxABC𝑀ABAxCAB=AxCAB
35 28 34 syld xCxBC𝑀ABAxCAB=AxCAB
36 35 imp31 xCxBC𝑀ABAxCAB=AxCAB
37 36 adantrr xCxBC𝑀ABCABAAxCAB=AxCAB
38 3 29 chincli CABC
39 chlej2 CABCACAxCCABAAxCABAxA
40 39 ex CABCACAxCCABAAxCABAxA
41 38 1 40 mp3an12 AxCCABAAxCABAxA
42 10 41 syl xCCABAAxCABAxA
43 42 imp xCCABAAxCABAxA
44 chjcom AxCACAxA=AAx
45 10 1 44 sylancl xCAxA=AAx
46 1 chjidmi AA=A
47 46 oveq1i AAx=Ax
48 chjass ACACxCAAx=AAx
49 1 1 48 mp3an12 xCAAx=AAx
50 chjcom ACxCAx=xA
51 1 50 mpan xCAx=xA
52 47 49 51 3eqtr3a xCAAx=xA
53 45 52 eqtrd xCAxA=xA
54 53 adantr xCCABAAxA=xA
55 43 54 sseqtrd xCCABAAxCABxA
56 55 ad2ant2rl xCxBC𝑀ABCABAAxCABxA
57 37 56 eqsstrd xCxBC𝑀ABCABAAxCABxA
58 57 ssrind xCxBC𝑀ABCABAAxCABBxAB
59 25 58 eqsstrd xCxBC𝑀ABCABAxCABxAB
60 59 adantrl xCxBA𝑀BC𝑀ABCABAxCABxAB
61 mdi ACBCxCA𝑀BxBxAB=xAB
62 61 exp32 ACBCxCA𝑀BxBxAB=xAB
63 1 2 62 mp3an12 xCA𝑀BxBxAB=xAB
64 63 com23 xCxBA𝑀BxAB=xAB
65 64 imp31 xCxBA𝑀BxAB=xAB
66 1 3 chub2i ACA
67 ssrin ACAABCAB
68 66 67 ax-mp ABCAB
69 1 2 chincli ABC
70 6 2 chincli CABC
71 chlej2 ABCCABCxCABCABxABxCAB
72 71 ex ABCCABCxCABCABxABxCAB
73 69 70 72 mp3an12 xCABCABxABxCAB
74 68 73 mpi xCxABxCAB
75 74 ad2antrr xCxBA𝑀BxABxCAB
76 65 75 eqsstrd xCxBA𝑀BxABxCAB
77 76 adantrr xCxBA𝑀BC𝑀ABCABAxABxCAB
78 60 77 sstrd xCxBA𝑀BC𝑀ABCABAxCABxCAB
79 78 exp31 xCxBA𝑀BC𝑀ABCABAxCABxCAB
80 79 com3r A𝑀BC𝑀ABCABAxCxBxCABxCAB
81 80 3impb A𝑀BC𝑀ABCABAxCxBxCABxCAB
82 81 ralrimiv A𝑀BC𝑀ABCABAxCxBxCABxCAB
83 mdbr2 CACBCCA𝑀BxCxBxCABxCAB
84 6 2 83 mp2an CA𝑀BxCxBxCABxCAB
85 82 84 sylibr A𝑀BC𝑀ABCABACA𝑀B
86 3 1 chjcomi CA=AC
87 incom BAB=ABB
88 18 87 19 3eqtr3ri B=ABB
89 86 88 ineq12i CAB=ACABB
90 inass ACABB=ACABB
91 1 2 chub1i AAB
92 mdi CCABCACC𝑀ABAABACAB=ACAB
93 92 exp32 CCABCACC𝑀ABAABACAB=ACAB
94 3 29 1 93 mp3an C𝑀ABAABACAB=ACAB
95 91 94 mpi C𝑀ABACAB=ACAB
96 1 38 chjcomi ACAB=CABA
97 38 1 chlejb1i CABACABA=A
98 97 biimpi CABACABA=A
99 96 98 eqtrid CABAACAB=A
100 95 99 sylan9eq C𝑀ABCABAACAB=A
101 100 ineq1d C𝑀ABCABAACABB=AB
102 90 101 eqtr3id C𝑀ABCABAACABB=AB
103 89 102 eqtrid C𝑀ABCABACAB=AB
104 103 3adant1 A𝑀BC𝑀ABCABACAB=AB
105 85 104 jca A𝑀BC𝑀ABCABACA𝑀BCAB=AB