Description: Lemma for mdsymi . (Contributed by NM, 2-Jul-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mdsymlem1.1 | |
|
mdsymlem1.2 | |
||
mdsymlem1.3 | |
||
Assertion | mdsymlem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdsymlem1.1 | |
|
2 | mdsymlem1.2 | |
|
3 | mdsymlem1.3 | |
|
4 | ssin | |
|
5 | 3 | sseq2i | |
6 | 5 | biimpi | |
7 | 6 | adantl | |
8 | 4 7 | sylbir | |
9 | 1 | atcvat4i | |
10 | 9 | exp4b | |
11 | 10 | com34 | |
12 | 11 | com23 | |
13 | 12 | imp4b | |
14 | 8 13 | sylan2 | |
15 | 14 | adantrr | |
16 | 15 | com12 | |
17 | 16 | adantlr | |
18 | 17 | adantlr | |
19 | 18 | imp | |
20 | nssne2 | |
|
21 | 20 | adantrl | |
22 | atnemeq0 | |
|
23 | 22 | ancoms | |
24 | 21 23 | imbitrid | |
25 | 24 | adantll | |
26 | 25 | adantr | |
27 | atelch | |
|
28 | atelch | |
|
29 | chjcom | |
|
30 | 27 28 29 | syl2an | |
31 | 30 | adantlr | |
32 | 31 | sseq2d | |
33 | atexch | |
|
34 | 28 33 | syl3an1 | |
35 | 34 | 3com13 | |
36 | 35 | 3expa | |
37 | 36 | expd | |
38 | 32 37 | sylbid | |
39 | 38 | imp | |
40 | 26 39 | syld | |
41 | 40 | expd | |
42 | 41 | exp31 | |
43 | 42 | com24 | |
44 | 43 | impd | |
45 | 44 | com24 | |
46 | 45 | imp4b | |
47 | 46 | anasss | |
48 | simprl | |
|
49 | 48 | a1i | |
50 | simpl | |
|
51 | 4 50 | sylbir | |
52 | 51 | ad2antrl | |
53 | 52 | adantl | |
54 | 49 53 | jctird | |
55 | 47 54 | jcad | |
56 | 55 | expd | |
57 | 56 | adantlr | |
58 | 57 | adantlr | |
59 | 58 | adantlr | |
60 | 59 | reximdvai | |
61 | 19 60 | mpd | |
62 | chjcl | |
|
63 | 1 62 | mpan | |
64 | 3 63 | eqeltrid | |
65 | chincl | |
|
66 | 2 64 65 | sylancr | |
67 | 27 66 | syl | |
68 | chrelat2 | |
|
69 | 67 1 68 | sylancl | |
70 | 69 | biimpa | |
71 | 70 | ad2antrr | |
72 | 61 71 | reximddv | |