Metamath Proof Explorer


Theorem mdsymlem3

Description: Lemma for mdsymi . (Contributed by NM, 2-Jul-2004) (New usage is discouraged.)

Ref Expression
Hypotheses mdsymlem1.1 AC
mdsymlem1.2 BC
mdsymlem1.3 C=Ap
Assertion mdsymlem3 pHAtoms¬BCApABA0rHAtomsqHAtomspqrqArB

Proof

Step Hyp Ref Expression
1 mdsymlem1.1 AC
2 mdsymlem1.2 BC
3 mdsymlem1.3 C=Ap
4 ssin rBrCrBC
5 3 sseq2i rCrAp
6 5 biimpi rCrAp
7 6 adantl rBrCrAp
8 4 7 sylbir rBCrAp
9 1 atcvat4i rHAtomspHAtomsA0rApqHAtomsqArpq
10 9 exp4b rHAtomspHAtomsA0rApqHAtomsqArpq
11 10 com34 rHAtomspHAtomsrApA0qHAtomsqArpq
12 11 com23 rHAtomsrAppHAtomsA0qHAtomsqArpq
13 12 imp4b rHAtomsrAppHAtomsA0qHAtomsqArpq
14 8 13 sylan2 rHAtomsrBCpHAtomsA0qHAtomsqArpq
15 14 adantrr rHAtomsrBC¬rApHAtomsA0qHAtomsqArpq
16 15 com12 pHAtomsA0rHAtomsrBC¬rAqHAtomsqArpq
17 16 adantlr pHAtoms¬BCAA0rHAtomsrBC¬rAqHAtomsqArpq
18 17 adantlr pHAtoms¬BCApABA0rHAtomsrBC¬rAqHAtomsqArpq
19 18 imp pHAtoms¬BCApABA0rHAtomsrBC¬rAqHAtomsqArpq
20 nssne2 qA¬rAqr
21 20 adantrl qArBC¬rAqr
22 atnemeq0 qHAtomsrHAtomsqrqr=0
23 22 ancoms rHAtomsqHAtomsqrqr=0
24 21 23 imbitrid rHAtomsqHAtomsqArBC¬rAqr=0
25 24 adantll pHAtomsrHAtomsqHAtomsqArBC¬rAqr=0
26 25 adantr pHAtomsrHAtomsqHAtomsrpqqArBC¬rAqr=0
27 atelch pHAtomspC
28 atelch qHAtomsqC
29 chjcom pCqCpq=qp
30 27 28 29 syl2an pHAtomsqHAtomspq=qp
31 30 adantlr pHAtomsrHAtomsqHAtomspq=qp
32 31 sseq2d pHAtomsrHAtomsqHAtomsrpqrqp
33 atexch qCrHAtomspHAtomsrqpqr=0pqr
34 28 33 syl3an1 qHAtomsrHAtomspHAtomsrqpqr=0pqr
35 34 3com13 pHAtomsrHAtomsqHAtomsrqpqr=0pqr
36 35 3expa pHAtomsrHAtomsqHAtomsrqpqr=0pqr
37 36 expd pHAtomsrHAtomsqHAtomsrqpqr=0pqr
38 32 37 sylbid pHAtomsrHAtomsqHAtomsrpqqr=0pqr
39 38 imp pHAtomsrHAtomsqHAtomsrpqqr=0pqr
40 26 39 syld pHAtomsrHAtomsqHAtomsrpqqArBC¬rApqr
41 40 expd pHAtomsrHAtomsqHAtomsrpqqArBC¬rApqr
42 41 exp31 pHAtomsrHAtomsqHAtomsrpqqArBC¬rApqr
43 42 com24 pHAtomsrHAtomsqArpqqHAtomsrBC¬rApqr
44 43 impd pHAtomsrHAtomsqArpqqHAtomsrBC¬rApqr
45 44 com24 pHAtomsrHAtomsrBC¬rAqHAtomsqArpqpqr
46 45 imp4b pHAtomsrHAtomsrBC¬rAqHAtomsqArpqpqr
47 46 anasss pHAtomsrHAtomsrBC¬rAqHAtomsqArpqpqr
48 simprl qHAtomsqArpqqA
49 48 a1i pHAtomsrHAtomsrBC¬rAqHAtomsqArpqqA
50 simpl rBrCrB
51 4 50 sylbir rBCrB
52 51 ad2antrl rHAtomsrBC¬rArB
53 52 adantl pHAtomsrHAtomsrBC¬rArB
54 49 53 jctird pHAtomsrHAtomsrBC¬rAqHAtomsqArpqqArB
55 47 54 jcad pHAtomsrHAtomsrBC¬rAqHAtomsqArpqpqrqArB
56 55 expd pHAtomsrHAtomsrBC¬rAqHAtomsqArpqpqrqArB
57 56 adantlr pHAtoms¬BCArHAtomsrBC¬rAqHAtomsqArpqpqrqArB
58 57 adantlr pHAtoms¬BCApABrHAtomsrBC¬rAqHAtomsqArpqpqrqArB
59 58 adantlr pHAtoms¬BCApABA0rHAtomsrBC¬rAqHAtomsqArpqpqrqArB
60 59 reximdvai pHAtoms¬BCApABA0rHAtomsrBC¬rAqHAtomsqArpqqHAtomspqrqArB
61 19 60 mpd pHAtoms¬BCApABA0rHAtomsrBC¬rAqHAtomspqrqArB
62 chjcl ACpCApC
63 1 62 mpan pCApC
64 3 63 eqeltrid pCCC
65 chincl BCCCBCC
66 2 64 65 sylancr pCBCC
67 27 66 syl pHAtomsBCC
68 chrelat2 BCCAC¬BCArHAtomsrBC¬rA
69 67 1 68 sylancl pHAtoms¬BCArHAtomsrBC¬rA
70 69 biimpa pHAtoms¬BCArHAtomsrBC¬rA
71 70 ad2antrr pHAtoms¬BCApABA0rHAtomsrBC¬rA
72 61 71 reximddv pHAtoms¬BCApABA0rHAtomsqHAtomspqrqArB