Metamath Proof Explorer


Theorem mdsymlem5

Description: Lemma for mdsymi . (Contributed by NM, 2-Jul-2004) (New usage is discouraged.)

Ref Expression
Hypotheses mdsymlem1.1 A C
mdsymlem1.2 B C
mdsymlem1.3 C = A p
Assertion mdsymlem5 q HAtoms r HAtoms ¬ q = p p q r q A r B c C A c p HAtoms p c p c B A

Proof

Step Hyp Ref Expression
1 mdsymlem1.1 A C
2 mdsymlem1.2 B C
3 mdsymlem1.3 C = A p
4 df-ne q p ¬ q = p
5 atnemeq0 q HAtoms p HAtoms q p q p = 0
6 4 5 bitr3id q HAtoms p HAtoms ¬ q = p q p = 0
7 6 anbi2d q HAtoms p HAtoms p q r ¬ q = p p q r q p = 0
8 7 3adant3 q HAtoms p HAtoms r HAtoms p q r ¬ q = p p q r q p = 0
9 atelch q HAtoms q C
10 atexch q C p HAtoms r HAtoms p q r q p = 0 r q p
11 9 10 syl3an1 q HAtoms p HAtoms r HAtoms p q r q p = 0 r q p
12 8 11 sylbid q HAtoms p HAtoms r HAtoms p q r ¬ q = p r q p
13 12 expd q HAtoms p HAtoms r HAtoms p q r ¬ q = p r q p
14 13 3com23 q HAtoms r HAtoms p HAtoms p q r ¬ q = p r q p
15 14 3expa q HAtoms r HAtoms p HAtoms p q r ¬ q = p r q p
16 15 adantrl q HAtoms r HAtoms c C p HAtoms p q r ¬ q = p r q p
17 16 adantrd q HAtoms r HAtoms c C p HAtoms p q r q A r B ¬ q = p r q p
18 17 imp32 q HAtoms r HAtoms c C p HAtoms p q r q A r B ¬ q = p r q p
19 18 adantrl q HAtoms r HAtoms c C p HAtoms A c p q r q A r B ¬ q = p r q p
20 19 adantrr q HAtoms r HAtoms c C p HAtoms A c p q r q A r B ¬ q = p p c r q p
21 simplrl p q r q A r B ¬ q = p q A
22 atelch p HAtoms p C
23 22 anim1i p HAtoms c C p C c C
24 23 ancoms c C p HAtoms p C c C
25 chub2 A C c C A c A
26 1 25 mpan c C A c A
27 sstr q A A c A q c A
28 26 27 sylan2 q A c C q c A
29 chub1 c C A C c c A
30 1 29 mpan2 c C c c A
31 sstr p c c c A p c A
32 30 31 sylan2 p c c C p c A
33 28 32 anim12i q A c C p c c C q c A p c A
34 33 anandirs q A p c c C q c A p c A
35 34 ancoms c C q A p c q c A p c A
36 35 adantll q C p C c C q A p c q c A p c A
37 chjcl c C A C c A C
38 1 37 mpan2 c C c A C
39 chlub q C p C c A C q c A p c A q p c A
40 38 39 syl3an3 q C p C c C q c A p c A q p c A
41 40 3expa q C p C c C q c A p c A q p c A
42 41 adantr q C p C c C q A p c q c A p c A q p c A
43 36 42 mpbid q C p C c C q A p c q p c A
44 43 adantrl q C p C c C A c q A p c q p c A
45 chlejb2 A C c C A c c A = c
46 1 45 mpan c C A c c A = c
47 46 biimpa c C A c c A = c
48 47 ad2ant2lr q C p C c C A c q A p c c A = c
49 44 48 sseqtrd q C p C c C A c q A p c q p c
50 49 exp45 q C p C c C A c q A p c q p c
51 50 anasss q C p C c C A c q A p c q p c
52 9 24 51 syl2an q HAtoms c C p HAtoms A c q A p c q p c
53 52 adantlr q HAtoms r HAtoms c C p HAtoms A c q A p c q p c
54 21 53 syl7 q HAtoms r HAtoms c C p HAtoms A c p q r q A r B ¬ q = p p c q p c
55 54 imp44 q HAtoms r HAtoms c C p HAtoms A c p q r q A r B ¬ q = p p c q p c
56 20 55 sstrd q HAtoms r HAtoms c C p HAtoms A c p q r q A r B ¬ q = p p c r c
57 simplrr p q r q A r B ¬ q = p r B
58 57 ad2antlr A c p q r q A r B ¬ q = p p c r B
59 58 adantl q HAtoms r HAtoms c C p HAtoms A c p q r q A r B ¬ q = p p c r B
60 56 59 ssind q HAtoms r HAtoms c C p HAtoms A c p q r q A r B ¬ q = p p c r c B
61 atelch r HAtoms r C
62 9 61 anim12i q HAtoms r HAtoms q C r C
63 chincl c C B C c B C
64 2 63 mpan2 c C c B C
65 chlej1 r C c B C q C r c B r q c B q
66 65 ex r C c B C q C r c B r q c B q
67 64 66 syl3an2 r C c C q C r c B r q c B q
68 67 3comr q C r C c C r c B r q c B q
69 68 3expa q C r C c C r c B r q c B q
70 69 adantr q C r C c C q A r c B r q c B q
71 chlej2 q C A C c B C q A c B q c B A
72 1 71 mp3anl2 q C c B C q A c B q c B A
73 64 72 sylanl2 q C c C q A c B q c B A
74 73 adantllr q C r C c C q A c B q c B A
75 sstr2 r q c B q c B q c B A r q c B A
76 74 75 syl5com q C r C c C q A r q c B q r q c B A
77 chjcom q C r C q r = r q
78 77 ad2antrr q C r C c C q A q r = r q
79 78 sseq1d q C r C c C q A q r c B A r q c B A
80 76 79 sylibrd q C r C c C q A r q c B q q r c B A
81 70 80 syld q C r C c C q A r c B q r c B A
82 81 adantrl q C r C c C p q r q A r c B q r c B A
83 sstr2 p q r q r c B A p c B A
84 83 ad2antrl q C r C c C p q r q A q r c B A p c B A
85 82 84 syld q C r C c C p q r q A r c B p c B A
86 85 exp32 q C r C c C p q r q A r c B p c B A
87 62 86 sylan q HAtoms r HAtoms c C p q r q A r c B p c B A
88 87 adantrr q HAtoms r HAtoms c C p HAtoms p q r q A r c B p c B A
89 88 imp31 q HAtoms r HAtoms c C p HAtoms p q r q A r c B p c B A
90 89 adantrr q HAtoms r HAtoms c C p HAtoms p q r q A r B r c B p c B A
91 90 anasss q HAtoms r HAtoms c C p HAtoms p q r q A r B r c B p c B A
92 91 adantrr q HAtoms r HAtoms c C p HAtoms p q r q A r B ¬ q = p r c B p c B A
93 92 adantrl q HAtoms r HAtoms c C p HAtoms A c p q r q A r B ¬ q = p r c B p c B A
94 93 adantrr q HAtoms r HAtoms c C p HAtoms A c p q r q A r B ¬ q = p p c r c B p c B A
95 60 94 mpd q HAtoms r HAtoms c C p HAtoms A c p q r q A r B ¬ q = p p c p c B A
96 95 exp32 q HAtoms r HAtoms c C p HAtoms A c p q r q A r B ¬ q = p p c p c B A
97 96 exp4d q HAtoms r HAtoms c C p HAtoms A c p q r q A r B ¬ q = p p c p c B A
98 97 exp32 q HAtoms r HAtoms c C p HAtoms A c p q r q A r B ¬ q = p p c p c B A
99 98 com34 q HAtoms r HAtoms c C A c p HAtoms p q r q A r B ¬ q = p p c p c B A
100 99 imp4c q HAtoms r HAtoms c C A c p HAtoms p q r q A r B ¬ q = p p c p c B A
101 100 com24 q HAtoms r HAtoms ¬ q = p p q r q A r B c C A c p HAtoms p c p c B A