Metamath Proof Explorer


Theorem metakunt11

Description: C is the right inverse for A. (Contributed by metakunt, 24-May-2024)

Ref Expression
Hypotheses metakunt11.1 φM
metakunt11.2 φI
metakunt11.3 φIM
metakunt11.4 A=x1Mifx=IMifx<Ixx1
metakunt11.5 C=y1Mify=MIify<Iyy+1
metakunt11.6 φX1M
Assertion metakunt11 φX<IACX=X

Proof

Step Hyp Ref Expression
1 metakunt11.1 φM
2 metakunt11.2 φI
3 metakunt11.3 φIM
4 metakunt11.4 A=x1Mifx=IMifx<Ixx1
5 metakunt11.5 C=y1Mify=MIify<Iyy+1
6 metakunt11.6 φX1M
7 4 a1i φX<IA=x1Mifx=IMifx<Ixx1
8 eqeq1 x=CXx=ICX=I
9 breq1 x=CXx<ICX<I
10 id x=CXx=CX
11 oveq1 x=CXx1=CX1
12 9 10 11 ifbieq12d x=CXifx<Ixx1=ifCX<ICXCX1
13 8 12 ifbieq2d x=CXifx=IMifx<Ixx1=ifCX=IMifCX<ICXCX1
14 13 adantl φX<Ix=CXifx=IMifx<Ixx1=ifCX=IMifCX<ICXCX1
15 5 a1i φX<IC=y1Mify=MIify<Iyy+1
16 eqeq1 y=Xy=MX=M
17 breq1 y=Xy<IX<I
18 id y=Xy=X
19 oveq1 y=Xy+1=X+1
20 17 18 19 ifbieq12d y=Xify<Iyy+1=ifX<IXX+1
21 16 20 ifbieq2d y=Xify=MIify<Iyy+1=ifX=MIifX<IXX+1
22 21 adantl φX<Iy=Xify=MIify<Iyy+1=ifX=MIifX<IXX+1
23 elfznn X1MX
24 6 23 syl φX
25 24 nnred φX
26 25 adantr φX<IX
27 2 nnred φI
28 27 adantr φX<II
29 1 nnred φM
30 29 adantr φX<IM
31 simpr φX<IX<I
32 3 adantr φX<IIM
33 26 28 30 31 32 ltletrd φX<IX<M
34 26 33 ltned φX<IXM
35 df-ne XM¬X=M
36 34 35 sylib φX<I¬X=M
37 iffalse ¬X=MifX=MIifX<IXX+1=ifX<IXX+1
38 36 37 syl φX<IifX=MIifX<IXX+1=ifX<IXX+1
39 iftrue X<IifX<IXX+1=X
40 39 adantl φX<IifX<IXX+1=X
41 38 40 eqtrd φX<IifX=MIifX<IXX+1=X
42 41 adantr φX<Iy=XifX=MIifX<IXX+1=X
43 22 42 eqtrd φX<Iy=Xify=MIify<Iyy+1=X
44 6 adantr φX<IX1M
45 15 43 44 44 fvmptd φX<ICX=X
46 eqeq1 CX=XCX=IX=I
47 46 ifbid CX=XifCX=IMifCX<ICXCX1=ifX=IMifCX<ICXCX1
48 45 47 syl φX<IifCX=IMifCX<ICXCX1=ifX=IMifCX<ICXCX1
49 26 31 ltned φX<IXI
50 49 neneqd φX<I¬X=I
51 iffalse ¬X=IifX=IMifCX<ICXCX1=ifCX<ICXCX1
52 50 51 syl φX<IifX=IMifCX<ICXCX1=ifCX<ICXCX1
53 45 eqcomd φX<IX=CX
54 breq1 X=CXX<ICX<I
55 id X=CXX=CX
56 oveq1 X=CXX1=CX1
57 54 55 56 ifbieq12d X=CXifX<IXX1=ifCX<ICXCX1
58 53 57 syl φX<IifX<IXX1=ifCX<ICXCX1
59 58 eqcomd φX<IifCX<ICXCX1=ifX<IXX1
60 31 iftrued φX<IifX<IXX1=X
61 59 60 eqtrd φX<IifCX<ICXCX1=X
62 52 61 eqtrd φX<IifX=IMifCX<ICXCX1=X
63 48 62 eqtrd φX<IifCX=IMifCX<ICXCX1=X
64 63 adantr φX<Ix=CXifCX=IMifCX<ICXCX1=X
65 14 64 eqtrd φX<Ix=CXifx=IMifx<Ixx1=X
66 1 2 3 5 metakunt2 φC:1M1M
67 66 adantr φX<IC:1M1M
68 67 44 ffvelcdmd φX<ICX1M
69 7 65 68 44 fvmptd φX<IACX=X