Description: C is the right inverse for A. (Contributed by metakunt, 24-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | metakunt11.1 | |
|
metakunt11.2 | |
||
metakunt11.3 | |
||
metakunt11.4 | |
||
metakunt11.5 | |
||
metakunt11.6 | |
||
Assertion | metakunt11 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metakunt11.1 | |
|
2 | metakunt11.2 | |
|
3 | metakunt11.3 | |
|
4 | metakunt11.4 | |
|
5 | metakunt11.5 | |
|
6 | metakunt11.6 | |
|
7 | 4 | a1i | |
8 | eqeq1 | |
|
9 | breq1 | |
|
10 | id | |
|
11 | oveq1 | |
|
12 | 9 10 11 | ifbieq12d | |
13 | 8 12 | ifbieq2d | |
14 | 13 | adantl | |
15 | 5 | a1i | |
16 | eqeq1 | |
|
17 | breq1 | |
|
18 | id | |
|
19 | oveq1 | |
|
20 | 17 18 19 | ifbieq12d | |
21 | 16 20 | ifbieq2d | |
22 | 21 | adantl | |
23 | elfznn | |
|
24 | 6 23 | syl | |
25 | 24 | nnred | |
26 | 25 | adantr | |
27 | 2 | nnred | |
28 | 27 | adantr | |
29 | 1 | nnred | |
30 | 29 | adantr | |
31 | simpr | |
|
32 | 3 | adantr | |
33 | 26 28 30 31 32 | ltletrd | |
34 | 26 33 | ltned | |
35 | df-ne | |
|
36 | 34 35 | sylib | |
37 | iffalse | |
|
38 | 36 37 | syl | |
39 | iftrue | |
|
40 | 39 | adantl | |
41 | 38 40 | eqtrd | |
42 | 41 | adantr | |
43 | 22 42 | eqtrd | |
44 | 6 | adantr | |
45 | 15 43 44 44 | fvmptd | |
46 | eqeq1 | |
|
47 | 46 | ifbid | |
48 | 45 47 | syl | |
49 | 26 31 | ltned | |
50 | 49 | neneqd | |
51 | iffalse | |
|
52 | 50 51 | syl | |
53 | 45 | eqcomd | |
54 | breq1 | |
|
55 | id | |
|
56 | oveq1 | |
|
57 | 54 55 56 | ifbieq12d | |
58 | 53 57 | syl | |
59 | 58 | eqcomd | |
60 | 31 | iftrued | |
61 | 59 60 | eqtrd | |
62 | 52 61 | eqtrd | |
63 | 48 62 | eqtrd | |
64 | 63 | adantr | |
65 | 14 64 | eqtrd | |
66 | 1 2 3 5 | metakunt2 | |
67 | 66 | adantr | |
68 | 67 44 | ffvelcdmd | |
69 | 7 65 68 44 | fvmptd | |