Metamath Proof Explorer


Theorem metakunt6

Description: C is the left inverse for A. (Contributed by metakunt, 24-May-2024)

Ref Expression
Hypotheses metakunt6.1 φM
metakunt6.2 φI
metakunt6.3 φIM
metakunt6.4 A=x1Mifx=IMifx<Ixx1
metakunt6.5 C=y1Mify=MIify<Iyy+1
metakunt6.6 φX1M
Assertion metakunt6 φX<ICAX=X

Proof

Step Hyp Ref Expression
1 metakunt6.1 φM
2 metakunt6.2 φI
3 metakunt6.3 φIM
4 metakunt6.4 A=x1Mifx=IMifx<Ixx1
5 metakunt6.5 C=y1Mify=MIify<Iyy+1
6 metakunt6.6 φX1M
7 5 a1i φX<IC=y1Mify=MIify<Iyy+1
8 4 a1i φX<IA=x1Mifx=IMifx<Ixx1
9 id x=Xx=X
10 9 eqeq1d x=Xx=IX=I
11 breq1 x=Xx<IX<I
12 oveq1 x=Xx1=X1
13 11 9 12 ifbieq12d x=Xifx<Ixx1=ifX<IXX1
14 10 13 ifbieq2d x=Xifx=IMifx<Ixx1=ifX=IMifX<IXX1
15 14 adantl φX<Ix=Xifx=IMifx<Ixx1=ifX=IMifX<IXX1
16 elfznn X1MX
17 6 16 syl φX
18 17 nnred φX
19 18 adantr φX<IX
20 simpr φX<IX<I
21 19 20 ltned φX<IXI
22 df-ne XI¬X=I
23 21 22 sylib φX<I¬X=I
24 iffalse ¬X=IifX=IMifX<IXX1=ifX<IXX1
25 23 24 syl φX<IifX=IMifX<IXX1=ifX<IXX1
26 iftrue X<IifX<IXX1=X
27 26 adantl φX<IifX<IXX1=X
28 25 27 eqtrd φX<IifX=IMifX<IXX1=X
29 28 adantr φX<Ix=XifX=IMifX<IXX1=X
30 15 29 eqtrd φX<Ix=Xifx=IMifx<Ixx1=X
31 6 adantr φX<IX1M
32 8 30 31 31 fvmptd φX<IAX=X
33 eqcom AX=XX=AX
34 33 imbi2i φX<IAX=XφX<IX=AX
35 32 34 mpbi φX<IX=AX
36 35 eqeq2d φX<Iy=Xy=AX
37 eqeq1 y=Xy=MX=M
38 breq1 y=Xy<IX<I
39 id y=Xy=X
40 oveq1 y=Xy+1=X+1
41 38 39 40 ifbieq12d y=Xify<Iyy+1=ifX<IXX+1
42 37 41 ifbieq2d y=Xify=MIify<Iyy+1=ifX=MIifX<IXX+1
43 42 adantl φX<Iy=Xify=MIify<Iyy+1=ifX=MIifX<IXX+1
44 2 nnred φI
45 44 adantr φX<II
46 1 nnred φM
47 46 adantr φX<IM
48 3 adantr φX<IIM
49 19 45 47 20 48 ltletrd φX<IX<M
50 19 49 ltned φX<IXM
51 50 neneqd φX<I¬X=M
52 iffalse ¬X=MifX=MIifX<IXX+1=ifX<IXX+1
53 51 52 syl φX<IifX=MIifX<IXX+1=ifX<IXX+1
54 iftrue X<IifX<IXX+1=X
55 54 adantl φX<IifX<IXX+1=X
56 53 55 eqtrd φX<IifX=MIifX<IXX+1=X
57 56 adantr φX<Iy=XifX=MIifX<IXX+1=X
58 43 57 eqtrd φX<Iy=Xify=MIify<Iyy+1=X
59 58 ex φX<Iy=Xify=MIify<Iyy+1=X
60 36 59 sylbird φX<Iy=AXify=MIify<Iyy+1=X
61 60 imp φX<Iy=AXify=MIify<Iyy+1=X
62 1 adantr φX<IM
63 2 adantr φX<II
64 62 63 48 4 metakunt1 φX<IA:1M1M
65 64 31 ffvelcdmd φX<IAX1M
66 7 61 65 31 fvmptd φX<ICAX=X