Description: C is the left inverse for A. (Contributed by metakunt, 24-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | metakunt6.1 | |
|
metakunt6.2 | |
||
metakunt6.3 | |
||
metakunt6.4 | |
||
metakunt6.5 | |
||
metakunt6.6 | |
||
Assertion | metakunt6 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metakunt6.1 | |
|
2 | metakunt6.2 | |
|
3 | metakunt6.3 | |
|
4 | metakunt6.4 | |
|
5 | metakunt6.5 | |
|
6 | metakunt6.6 | |
|
7 | 5 | a1i | |
8 | 4 | a1i | |
9 | id | |
|
10 | 9 | eqeq1d | |
11 | breq1 | |
|
12 | oveq1 | |
|
13 | 11 9 12 | ifbieq12d | |
14 | 10 13 | ifbieq2d | |
15 | 14 | adantl | |
16 | elfznn | |
|
17 | 6 16 | syl | |
18 | 17 | nnred | |
19 | 18 | adantr | |
20 | simpr | |
|
21 | 19 20 | ltned | |
22 | df-ne | |
|
23 | 21 22 | sylib | |
24 | iffalse | |
|
25 | 23 24 | syl | |
26 | iftrue | |
|
27 | 26 | adantl | |
28 | 25 27 | eqtrd | |
29 | 28 | adantr | |
30 | 15 29 | eqtrd | |
31 | 6 | adantr | |
32 | 8 30 31 31 | fvmptd | |
33 | eqcom | |
|
34 | 33 | imbi2i | |
35 | 32 34 | mpbi | |
36 | 35 | eqeq2d | |
37 | eqeq1 | |
|
38 | breq1 | |
|
39 | id | |
|
40 | oveq1 | |
|
41 | 38 39 40 | ifbieq12d | |
42 | 37 41 | ifbieq2d | |
43 | 42 | adantl | |
44 | 2 | nnred | |
45 | 44 | adantr | |
46 | 1 | nnred | |
47 | 46 | adantr | |
48 | 3 | adantr | |
49 | 19 45 47 20 48 | ltletrd | |
50 | 19 49 | ltned | |
51 | 50 | neneqd | |
52 | iffalse | |
|
53 | 51 52 | syl | |
54 | iftrue | |
|
55 | 54 | adantl | |
56 | 53 55 | eqtrd | |
57 | 56 | adantr | |
58 | 43 57 | eqtrd | |
59 | 58 | ex | |
60 | 36 59 | sylbird | |
61 | 60 | imp | |
62 | 1 | adantr | |
63 | 2 | adantr | |
64 | 62 63 48 4 | metakunt1 | |
65 | 64 31 | ffvelcdmd | |
66 | 7 61 65 31 | fvmptd | |