Metamath Proof Explorer


Theorem metakunt6

Description: C is the left inverse for A. (Contributed by metakunt, 24-May-2024)

Ref Expression
Hypotheses metakunt6.1 φ M
metakunt6.2 φ I
metakunt6.3 φ I M
metakunt6.4 A = x 1 M if x = I M if x < I x x 1
metakunt6.5 C = y 1 M if y = M I if y < I y y + 1
metakunt6.6 φ X 1 M
Assertion metakunt6 φ X < I C A X = X

Proof

Step Hyp Ref Expression
1 metakunt6.1 φ M
2 metakunt6.2 φ I
3 metakunt6.3 φ I M
4 metakunt6.4 A = x 1 M if x = I M if x < I x x 1
5 metakunt6.5 C = y 1 M if y = M I if y < I y y + 1
6 metakunt6.6 φ X 1 M
7 5 a1i φ X < I C = y 1 M if y = M I if y < I y y + 1
8 4 a1i φ X < I A = x 1 M if x = I M if x < I x x 1
9 id x = X x = X
10 9 eqeq1d x = X x = I X = I
11 breq1 x = X x < I X < I
12 oveq1 x = X x 1 = X 1
13 11 9 12 ifbieq12d x = X if x < I x x 1 = if X < I X X 1
14 10 13 ifbieq2d x = X if x = I M if x < I x x 1 = if X = I M if X < I X X 1
15 14 adantl φ X < I x = X if x = I M if x < I x x 1 = if X = I M if X < I X X 1
16 elfznn X 1 M X
17 6 16 syl φ X
18 17 nnred φ X
19 18 adantr φ X < I X
20 simpr φ X < I X < I
21 19 20 ltned φ X < I X I
22 df-ne X I ¬ X = I
23 21 22 sylib φ X < I ¬ X = I
24 iffalse ¬ X = I if X = I M if X < I X X 1 = if X < I X X 1
25 23 24 syl φ X < I if X = I M if X < I X X 1 = if X < I X X 1
26 iftrue X < I if X < I X X 1 = X
27 26 adantl φ X < I if X < I X X 1 = X
28 25 27 eqtrd φ X < I if X = I M if X < I X X 1 = X
29 28 adantr φ X < I x = X if X = I M if X < I X X 1 = X
30 15 29 eqtrd φ X < I x = X if x = I M if x < I x x 1 = X
31 6 adantr φ X < I X 1 M
32 8 30 31 31 fvmptd φ X < I A X = X
33 eqcom A X = X X = A X
34 33 imbi2i φ X < I A X = X φ X < I X = A X
35 32 34 mpbi φ X < I X = A X
36 35 eqeq2d φ X < I y = X y = A X
37 eqeq1 y = X y = M X = M
38 breq1 y = X y < I X < I
39 id y = X y = X
40 oveq1 y = X y + 1 = X + 1
41 38 39 40 ifbieq12d y = X if y < I y y + 1 = if X < I X X + 1
42 37 41 ifbieq2d y = X if y = M I if y < I y y + 1 = if X = M I if X < I X X + 1
43 42 adantl φ X < I y = X if y = M I if y < I y y + 1 = if X = M I if X < I X X + 1
44 2 nnred φ I
45 44 adantr φ X < I I
46 1 nnred φ M
47 46 adantr φ X < I M
48 3 adantr φ X < I I M
49 19 45 47 20 48 ltletrd φ X < I X < M
50 19 49 ltned φ X < I X M
51 50 neneqd φ X < I ¬ X = M
52 iffalse ¬ X = M if X = M I if X < I X X + 1 = if X < I X X + 1
53 51 52 syl φ X < I if X = M I if X < I X X + 1 = if X < I X X + 1
54 iftrue X < I if X < I X X + 1 = X
55 54 adantl φ X < I if X < I X X + 1 = X
56 53 55 eqtrd φ X < I if X = M I if X < I X X + 1 = X
57 56 adantr φ X < I y = X if X = M I if X < I X X + 1 = X
58 43 57 eqtrd φ X < I y = X if y = M I if y < I y y + 1 = X
59 58 ex φ X < I y = X if y = M I if y < I y y + 1 = X
60 36 59 sylbird φ X < I y = A X if y = M I if y < I y y + 1 = X
61 60 imp φ X < I y = A X if y = M I if y < I y y + 1 = X
62 1 adantr φ X < I M
63 2 adantr φ X < I I
64 62 63 48 4 metakunt1 φ X < I A : 1 M 1 M
65 64 31 ffvelrnd φ X < I A X 1 M
66 7 61 65 31 fvmptd φ X < I C A X = X