Metamath Proof Explorer


Theorem metdsge

Description: The distance from the point A to the set S is greater than R iff the R -ball around A misses S . (Contributed by Mario Carneiro, 4-Sep-2015) (Proof shortened by AV, 30-Sep-2020)

Ref Expression
Hypothesis metdscn.f F=xXsupranySxDy*<
Assertion metdsge D∞MetXSXAXR*RFASAballDR=

Proof

Step Hyp Ref Expression
1 metdscn.f F=xXsupranySxDy*<
2 simpl3 D∞MetXSXAXR*AX
3 1 metdsval AXFA=supranySADy*<
4 2 3 syl D∞MetXSXAXR*FA=supranySADy*<
5 4 breq2d D∞MetXSXAXR*RFARsupranySADy*<
6 simpll1 D∞MetXSXAXR*wSD∞MetX
7 2 adantr D∞MetXSXAXR*wSAX
8 simpl2 D∞MetXSXAXR*SX
9 8 sselda D∞MetXSXAXR*wSwX
10 xmetcl D∞MetXAXwXADw*
11 6 7 9 10 syl3anc D∞MetXSXAXR*wSADw*
12 oveq2 y=wADy=ADw
13 12 cbvmptv ySADy=wSADw
14 11 13 fmptd D∞MetXSXAXR*ySADy:S*
15 14 frnd D∞MetXSXAXR*ranySADy*
16 simpr D∞MetXSXAXR*R*
17 infxrgelb ranySADy*R*RsupranySADy*<zranySADyRz
18 15 16 17 syl2anc D∞MetXSXAXR*RsupranySADy*<zranySADyRz
19 16 adantr D∞MetXSXAXR*wSR*
20 elbl2 D∞MetXR*AXwXwAballDRADw<R
21 6 19 7 9 20 syl22anc D∞MetXSXAXR*wSwAballDRADw<R
22 xrltnle ADw*R*ADw<R¬RADw
23 11 19 22 syl2anc D∞MetXSXAXR*wSADw<R¬RADw
24 21 23 bitrd D∞MetXSXAXR*wSwAballDR¬RADw
25 24 con2bid D∞MetXSXAXR*wSRADw¬wAballDR
26 25 ralbidva D∞MetXSXAXR*wSRADwwS¬wAballDR
27 ovex ADwV
28 27 rgenw wSADwV
29 breq2 z=ADwRzRADw
30 13 29 ralrnmptw wSADwVzranySADyRzwSRADw
31 28 30 ax-mp zranySADyRzwSRADw
32 disj SAballDR=wS¬wAballDR
33 26 31 32 3bitr4g D∞MetXSXAXR*zranySADyRzSAballDR=
34 5 18 33 3bitrd D∞MetXSXAXR*RFASAballDR=