Metamath Proof Explorer


Theorem methaus

Description: The topology generated by a metric space is Hausdorff. (Contributed by Mario Carneiro, 21-Mar-2015) (Revised by Mario Carneiro, 26-Aug-2015)

Ref Expression
Hypothesis methaus.1 J=MetOpenD
Assertion methaus D∞MetXJHaus

Proof

Step Hyp Ref Expression
1 methaus.1 J=MetOpenD
2 1 mopnex D∞MetXdMetXJ=MetOpend
3 metxmet dMetXd∞MetX
4 3 ad2antrr dMetXxXyXxyd∞MetX
5 simplrl dMetXxXyXxyxX
6 metcl dMetXxXyXxdy
7 6 3expb dMetXxXyXxdy
8 7 adantr dMetXxXyXxyxdy
9 metgt0 dMetXxXyXxy0<xdy
10 9 3expb dMetXxXyXxy0<xdy
11 10 biimpa dMetXxXyXxy0<xdy
12 8 11 elrpd dMetXxXyXxyxdy+
13 12 rphalfcld dMetXxXyXxyxdy2+
14 13 rpxrd dMetXxXyXxyxdy2*
15 eqid MetOpend=MetOpend
16 15 blopn d∞MetXxXxdy2*xballdxdy2MetOpend
17 4 5 14 16 syl3anc dMetXxXyXxyxballdxdy2MetOpend
18 simplrr dMetXxXyXxyyX
19 15 blopn d∞MetXyXxdy2*yballdxdy2MetOpend
20 4 18 14 19 syl3anc dMetXxXyXxyyballdxdy2MetOpend
21 blcntr d∞MetXxXxdy2+xxballdxdy2
22 4 5 13 21 syl3anc dMetXxXyXxyxxballdxdy2
23 blcntr d∞MetXyXxdy2+yyballdxdy2
24 4 18 13 23 syl3anc dMetXxXyXxyyyballdxdy2
25 13 rpred dMetXxXyXxyxdy2
26 25 25 rexaddd dMetXxXyXxyxdy2+𝑒xdy2=xdy2+xdy2
27 8 recnd dMetXxXyXxyxdy
28 27 2halvesd dMetXxXyXxyxdy2+xdy2=xdy
29 26 28 eqtrd dMetXxXyXxyxdy2+𝑒xdy2=xdy
30 8 leidd dMetXxXyXxyxdyxdy
31 29 30 eqbrtrd dMetXxXyXxyxdy2+𝑒xdy2xdy
32 bldisj d∞MetXxXyXxdy2*xdy2*xdy2+𝑒xdy2xdyxballdxdy2yballdxdy2=
33 4 5 18 14 14 31 32 syl33anc dMetXxXyXxyxballdxdy2yballdxdy2=
34 eleq2 m=xballdxdy2xmxxballdxdy2
35 ineq1 m=xballdxdy2mn=xballdxdy2n
36 35 eqeq1d m=xballdxdy2mn=xballdxdy2n=
37 34 36 3anbi13d m=xballdxdy2xmynmn=xxballdxdy2ynxballdxdy2n=
38 eleq2 n=yballdxdy2ynyyballdxdy2
39 ineq2 n=yballdxdy2xballdxdy2n=xballdxdy2yballdxdy2
40 39 eqeq1d n=yballdxdy2xballdxdy2n=xballdxdy2yballdxdy2=
41 38 40 3anbi23d n=yballdxdy2xxballdxdy2ynxballdxdy2n=xxballdxdy2yyballdxdy2xballdxdy2yballdxdy2=
42 37 41 rspc2ev xballdxdy2MetOpendyballdxdy2MetOpendxxballdxdy2yyballdxdy2xballdxdy2yballdxdy2=mMetOpendnMetOpendxmynmn=
43 17 20 22 24 33 42 syl113anc dMetXxXyXxymMetOpendnMetOpendxmynmn=
44 43 ex dMetXxXyXxymMetOpendnMetOpendxmynmn=
45 44 ralrimivva dMetXxXyXxymMetOpendnMetOpendxmynmn=
46 15 mopntopon d∞MetXMetOpendTopOnX
47 ishaus2 MetOpendTopOnXMetOpendHausxXyXxymMetOpendnMetOpendxmynmn=
48 3 46 47 3syl dMetXMetOpendHausxXyXxymMetOpendnMetOpendxmynmn=
49 45 48 mpbird dMetXMetOpendHaus
50 eleq1 J=MetOpendJHausMetOpendHaus
51 49 50 syl5ibrcom dMetXJ=MetOpendJHaus
52 51 rexlimiv dMetXJ=MetOpendJHaus
53 2 52 syl D∞MetXJHaus