Description: The topology generated by a metric space is Hausdorff. (Contributed by Mario Carneiro, 21-Mar-2015) (Revised by Mario Carneiro, 26-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | methaus.1 | |
|
Assertion | methaus | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | methaus.1 | |
|
2 | 1 | mopnex | |
3 | metxmet | |
|
4 | 3 | ad2antrr | |
5 | simplrl | |
|
6 | metcl | |
|
7 | 6 | 3expb | |
8 | 7 | adantr | |
9 | metgt0 | |
|
10 | 9 | 3expb | |
11 | 10 | biimpa | |
12 | 8 11 | elrpd | |
13 | 12 | rphalfcld | |
14 | 13 | rpxrd | |
15 | eqid | |
|
16 | 15 | blopn | |
17 | 4 5 14 16 | syl3anc | |
18 | simplrr | |
|
19 | 15 | blopn | |
20 | 4 18 14 19 | syl3anc | |
21 | blcntr | |
|
22 | 4 5 13 21 | syl3anc | |
23 | blcntr | |
|
24 | 4 18 13 23 | syl3anc | |
25 | 13 | rpred | |
26 | 25 25 | rexaddd | |
27 | 8 | recnd | |
28 | 27 | 2halvesd | |
29 | 26 28 | eqtrd | |
30 | 8 | leidd | |
31 | 29 30 | eqbrtrd | |
32 | bldisj | |
|
33 | 4 5 18 14 14 31 32 | syl33anc | |
34 | eleq2 | |
|
35 | ineq1 | |
|
36 | 35 | eqeq1d | |
37 | 34 36 | 3anbi13d | |
38 | eleq2 | |
|
39 | ineq2 | |
|
40 | 39 | eqeq1d | |
41 | 38 40 | 3anbi23d | |
42 | 37 41 | rspc2ev | |
43 | 17 20 22 24 33 42 | syl113anc | |
44 | 43 | ex | |
45 | 44 | ralrimivva | |
46 | 15 | mopntopon | |
47 | ishaus2 | |
|
48 | 3 46 47 | 3syl | |
49 | 45 48 | mpbird | |
50 | eleq1 | |
|
51 | 49 50 | syl5ibrcom | |
52 | 51 | rexlimiv | |
53 | 2 52 | syl | |