Description: A monoid homomorphism is bijective iff its converse is also a monoid homomorphism. (Contributed by AV, 22-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mhmf1o.b | |
|
mhmf1o.c | |
||
Assertion | mhmf1o | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhmf1o.b | |
|
2 | mhmf1o.c | |
|
3 | mhmrcl2 | |
|
4 | mhmrcl1 | |
|
5 | 3 4 | jca | |
6 | 5 | adantr | |
7 | f1ocnv | |
|
8 | 7 | adantl | |
9 | f1of | |
|
10 | 8 9 | syl | |
11 | simpll | |
|
12 | 10 | adantr | |
13 | simprl | |
|
14 | 12 13 | ffvelcdmd | |
15 | simprr | |
|
16 | 12 15 | ffvelcdmd | |
17 | eqid | |
|
18 | eqid | |
|
19 | 1 17 18 | mhmlin | |
20 | 11 14 16 19 | syl3anc | |
21 | simpr | |
|
22 | 21 | adantr | |
23 | f1ocnvfv2 | |
|
24 | 22 13 23 | syl2anc | |
25 | f1ocnvfv2 | |
|
26 | 22 15 25 | syl2anc | |
27 | 24 26 | oveq12d | |
28 | 20 27 | eqtrd | |
29 | 4 | adantr | |
30 | 29 | adantr | |
31 | 1 17 | mndcl | |
32 | 30 14 16 31 | syl3anc | |
33 | f1ocnvfv | |
|
34 | 22 32 33 | syl2anc | |
35 | 28 34 | mpd | |
36 | 35 | ralrimivva | |
37 | eqid | |
|
38 | eqid | |
|
39 | 37 38 | mhm0 | |
40 | 39 | adantr | |
41 | 40 | eqcomd | |
42 | 41 | fveq2d | |
43 | 1 37 | mndidcl | |
44 | 4 43 | syl | |
45 | 44 | adantr | |
46 | f1ocnvfv1 | |
|
47 | 21 45 46 | syl2anc | |
48 | 42 47 | eqtrd | |
49 | 10 36 48 | 3jca | |
50 | 2 1 18 17 38 37 | ismhm | |
51 | 6 49 50 | sylanbrc | |
52 | 1 2 | mhmf | |
53 | 52 | adantr | |
54 | 53 | ffnd | |
55 | 2 1 | mhmf | |
56 | 55 | adantl | |
57 | 56 | ffnd | |
58 | dff1o4 | |
|
59 | 54 57 58 | sylanbrc | |
60 | 51 59 | impbida | |