Metamath Proof Explorer


Theorem mhmf1o

Description: A monoid homomorphism is bijective iff its converse is also a monoid homomorphism. (Contributed by AV, 22-Oct-2019)

Ref Expression
Hypotheses mhmf1o.b B=BaseR
mhmf1o.c C=BaseS
Assertion mhmf1o FRMndHomSF:B1-1 ontoCF-1SMndHomR

Proof

Step Hyp Ref Expression
1 mhmf1o.b B=BaseR
2 mhmf1o.c C=BaseS
3 mhmrcl2 FRMndHomSSMnd
4 mhmrcl1 FRMndHomSRMnd
5 3 4 jca FRMndHomSSMndRMnd
6 5 adantr FRMndHomSF:B1-1 ontoCSMndRMnd
7 f1ocnv F:B1-1 ontoCF-1:C1-1 ontoB
8 7 adantl FRMndHomSF:B1-1 ontoCF-1:C1-1 ontoB
9 f1of F-1:C1-1 ontoBF-1:CB
10 8 9 syl FRMndHomSF:B1-1 ontoCF-1:CB
11 simpll FRMndHomSF:B1-1 ontoCxCyCFRMndHomS
12 10 adantr FRMndHomSF:B1-1 ontoCxCyCF-1:CB
13 simprl FRMndHomSF:B1-1 ontoCxCyCxC
14 12 13 ffvelcdmd FRMndHomSF:B1-1 ontoCxCyCF-1xB
15 simprr FRMndHomSF:B1-1 ontoCxCyCyC
16 12 15 ffvelcdmd FRMndHomSF:B1-1 ontoCxCyCF-1yB
17 eqid +R=+R
18 eqid +S=+S
19 1 17 18 mhmlin FRMndHomSF-1xBF-1yBFF-1x+RF-1y=FF-1x+SFF-1y
20 11 14 16 19 syl3anc FRMndHomSF:B1-1 ontoCxCyCFF-1x+RF-1y=FF-1x+SFF-1y
21 simpr FRMndHomSF:B1-1 ontoCF:B1-1 ontoC
22 21 adantr FRMndHomSF:B1-1 ontoCxCyCF:B1-1 ontoC
23 f1ocnvfv2 F:B1-1 ontoCxCFF-1x=x
24 22 13 23 syl2anc FRMndHomSF:B1-1 ontoCxCyCFF-1x=x
25 f1ocnvfv2 F:B1-1 ontoCyCFF-1y=y
26 22 15 25 syl2anc FRMndHomSF:B1-1 ontoCxCyCFF-1y=y
27 24 26 oveq12d FRMndHomSF:B1-1 ontoCxCyCFF-1x+SFF-1y=x+Sy
28 20 27 eqtrd FRMndHomSF:B1-1 ontoCxCyCFF-1x+RF-1y=x+Sy
29 4 adantr FRMndHomSF:B1-1 ontoCRMnd
30 29 adantr FRMndHomSF:B1-1 ontoCxCyCRMnd
31 1 17 mndcl RMndF-1xBF-1yBF-1x+RF-1yB
32 30 14 16 31 syl3anc FRMndHomSF:B1-1 ontoCxCyCF-1x+RF-1yB
33 f1ocnvfv F:B1-1 ontoCF-1x+RF-1yBFF-1x+RF-1y=x+SyF-1x+Sy=F-1x+RF-1y
34 22 32 33 syl2anc FRMndHomSF:B1-1 ontoCxCyCFF-1x+RF-1y=x+SyF-1x+Sy=F-1x+RF-1y
35 28 34 mpd FRMndHomSF:B1-1 ontoCxCyCF-1x+Sy=F-1x+RF-1y
36 35 ralrimivva FRMndHomSF:B1-1 ontoCxCyCF-1x+Sy=F-1x+RF-1y
37 eqid 0R=0R
38 eqid 0S=0S
39 37 38 mhm0 FRMndHomSF0R=0S
40 39 adantr FRMndHomSF:B1-1 ontoCF0R=0S
41 40 eqcomd FRMndHomSF:B1-1 ontoC0S=F0R
42 41 fveq2d FRMndHomSF:B1-1 ontoCF-10S=F-1F0R
43 1 37 mndidcl RMnd0RB
44 4 43 syl FRMndHomS0RB
45 44 adantr FRMndHomSF:B1-1 ontoC0RB
46 f1ocnvfv1 F:B1-1 ontoC0RBF-1F0R=0R
47 21 45 46 syl2anc FRMndHomSF:B1-1 ontoCF-1F0R=0R
48 42 47 eqtrd FRMndHomSF:B1-1 ontoCF-10S=0R
49 10 36 48 3jca FRMndHomSF:B1-1 ontoCF-1:CBxCyCF-1x+Sy=F-1x+RF-1yF-10S=0R
50 2 1 18 17 38 37 ismhm F-1SMndHomRSMndRMndF-1:CBxCyCF-1x+Sy=F-1x+RF-1yF-10S=0R
51 6 49 50 sylanbrc FRMndHomSF:B1-1 ontoCF-1SMndHomR
52 1 2 mhmf FRMndHomSF:BC
53 52 adantr FRMndHomSF-1SMndHomRF:BC
54 53 ffnd FRMndHomSF-1SMndHomRFFnB
55 2 1 mhmf F-1SMndHomRF-1:CB
56 55 adantl FRMndHomSF-1SMndHomRF-1:CB
57 56 ffnd FRMndHomSF-1SMndHomRF-1FnC
58 dff1o4 F:B1-1 ontoCFFnBF-1FnC
59 54 57 58 sylanbrc FRMndHomSF-1SMndHomRF:B1-1 ontoC
60 51 59 impbida FRMndHomSF:B1-1 ontoCF-1SMndHomR