| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mirreu.p |  | 
						
							| 2 |  | mirreu.d |  | 
						
							| 3 |  | mirreu.i |  | 
						
							| 4 |  | mirreu.g |  | 
						
							| 5 |  | mirreu.a |  | 
						
							| 6 |  | mirreu.m |  | 
						
							| 7 | 5 | adantr |  | 
						
							| 8 |  | eqidd |  | 
						
							| 9 |  | simpr |  | 
						
							| 10 | 4 | adantr |  | 
						
							| 11 | 1 2 3 10 7 7 | tgbtwntriv2 |  | 
						
							| 12 | 9 11 | eqeltrrd |  | 
						
							| 13 |  | oveq2 |  | 
						
							| 14 | 13 | eqeq1d |  | 
						
							| 15 |  | oveq1 |  | 
						
							| 16 | 15 | eleq2d |  | 
						
							| 17 | 14 16 | anbi12d |  | 
						
							| 18 | 17 | rspcev |  | 
						
							| 19 | 7 8 12 18 | syl12anc |  | 
						
							| 20 | 4 | ad3antrrr |  | 
						
							| 21 | 6 | ad3antrrr |  | 
						
							| 22 |  | simplrl |  | 
						
							| 23 |  | simprll |  | 
						
							| 24 |  | simpllr |  | 
						
							| 25 | 24 | oveq2d |  | 
						
							| 26 | 23 25 | eqtrd |  | 
						
							| 27 | 1 2 3 20 21 22 21 26 | axtgcgrid |  | 
						
							| 28 |  | simplrr |  | 
						
							| 29 |  | simprrl |  | 
						
							| 30 | 29 25 | eqtrd |  | 
						
							| 31 | 1 2 3 20 21 28 21 30 | axtgcgrid |  | 
						
							| 32 | 27 31 | eqtr3d |  | 
						
							| 33 | 32 | ex |  | 
						
							| 34 | 33 | ralrimivva |  | 
						
							| 35 | 19 34 | jca |  | 
						
							| 36 | 4 | adantr |  | 
						
							| 37 | 5 | adantr |  | 
						
							| 38 | 6 | adantr |  | 
						
							| 39 | 1 2 3 36 37 38 38 37 | axtgsegcon |  | 
						
							| 40 |  | ancom |  | 
						
							| 41 | 4 | adantr |  | 
						
							| 42 | 5 | adantr |  | 
						
							| 43 | 6 | adantr |  | 
						
							| 44 |  | simpr |  | 
						
							| 45 | 1 2 3 41 42 43 44 | tgbtwncomb |  | 
						
							| 46 | 45 | anbi2d |  | 
						
							| 47 | 40 46 | bitrid |  | 
						
							| 48 | 47 | rexbidva |  | 
						
							| 49 | 48 | adantr |  | 
						
							| 50 | 39 49 | mpbid |  | 
						
							| 51 | 4 | ad3antrrr |  | 
						
							| 52 | 6 | ad3antrrr |  | 
						
							| 53 | 5 | ad3antrrr |  | 
						
							| 54 |  | simplrl |  | 
						
							| 55 |  | simplrr |  | 
						
							| 56 |  | simpllr |  | 
						
							| 57 |  | simprlr |  | 
						
							| 58 | 1 2 3 51 54 52 53 57 | tgbtwncom |  | 
						
							| 59 |  | simprrr |  | 
						
							| 60 | 1 2 3 51 55 52 53 59 | tgbtwncom |  | 
						
							| 61 |  | simprll |  | 
						
							| 62 |  | simprrl |  | 
						
							| 63 | 1 2 3 51 52 52 53 53 54 55 56 58 60 61 62 | tgsegconeq |  | 
						
							| 64 | 63 | ex |  | 
						
							| 65 | 64 | ralrimivva |  | 
						
							| 66 | 50 65 | jca |  | 
						
							| 67 | 35 66 | pm2.61dane |  | 
						
							| 68 |  | oveq2 |  | 
						
							| 69 | 68 | eqeq1d |  | 
						
							| 70 |  | oveq1 |  | 
						
							| 71 | 70 | eleq2d |  | 
						
							| 72 | 69 71 | anbi12d |  | 
						
							| 73 | 72 | reu4 |  | 
						
							| 74 | 67 73 | sylibr |  |