Metamath Proof Explorer


Theorem mirreu3

Description: Existential uniqueness of the mirror point. Theorem 7.8 of Schwabhauser p. 49. (Contributed by Thierry Arnoux, 30-May-2019)

Ref Expression
Hypotheses mirreu.p P=BaseG
mirreu.d -˙=distG
mirreu.i I=ItvG
mirreu.g φG𝒢Tarski
mirreu.a φAP
mirreu.m φMP
Assertion mirreu3 φ∃!bPM-˙b=M-˙AMbIA

Proof

Step Hyp Ref Expression
1 mirreu.p P=BaseG
2 mirreu.d -˙=distG
3 mirreu.i I=ItvG
4 mirreu.g φG𝒢Tarski
5 mirreu.a φAP
6 mirreu.m φMP
7 5 adantr φA=MAP
8 eqidd φA=MM-˙A=M-˙A
9 simpr φA=MA=M
10 4 adantr φA=MG𝒢Tarski
11 1 2 3 10 7 7 tgbtwntriv2 φA=MAAIA
12 9 11 eqeltrrd φA=MMAIA
13 oveq2 b=AM-˙b=M-˙A
14 13 eqeq1d b=AM-˙b=M-˙AM-˙A=M-˙A
15 oveq1 b=AbIA=AIA
16 15 eleq2d b=AMbIAMAIA
17 14 16 anbi12d b=AM-˙b=M-˙AMbIAM-˙A=M-˙AMAIA
18 17 rspcev APM-˙A=M-˙AMAIAbPM-˙b=M-˙AMbIA
19 7 8 12 18 syl12anc φA=MbPM-˙b=M-˙AMbIA
20 4 ad3antrrr φA=MbPcPM-˙b=M-˙AMbIAM-˙c=M-˙AMcIAG𝒢Tarski
21 6 ad3antrrr φA=MbPcPM-˙b=M-˙AMbIAM-˙c=M-˙AMcIAMP
22 simplrl φA=MbPcPM-˙b=M-˙AMbIAM-˙c=M-˙AMcIAbP
23 simprll φA=MbPcPM-˙b=M-˙AMbIAM-˙c=M-˙AMcIAM-˙b=M-˙A
24 simpllr φA=MbPcPM-˙b=M-˙AMbIAM-˙c=M-˙AMcIAA=M
25 24 oveq2d φA=MbPcPM-˙b=M-˙AMbIAM-˙c=M-˙AMcIAM-˙A=M-˙M
26 23 25 eqtrd φA=MbPcPM-˙b=M-˙AMbIAM-˙c=M-˙AMcIAM-˙b=M-˙M
27 1 2 3 20 21 22 21 26 axtgcgrid φA=MbPcPM-˙b=M-˙AMbIAM-˙c=M-˙AMcIAM=b
28 simplrr φA=MbPcPM-˙b=M-˙AMbIAM-˙c=M-˙AMcIAcP
29 simprrl φA=MbPcPM-˙b=M-˙AMbIAM-˙c=M-˙AMcIAM-˙c=M-˙A
30 29 25 eqtrd φA=MbPcPM-˙b=M-˙AMbIAM-˙c=M-˙AMcIAM-˙c=M-˙M
31 1 2 3 20 21 28 21 30 axtgcgrid φA=MbPcPM-˙b=M-˙AMbIAM-˙c=M-˙AMcIAM=c
32 27 31 eqtr3d φA=MbPcPM-˙b=M-˙AMbIAM-˙c=M-˙AMcIAb=c
33 32 ex φA=MbPcPM-˙b=M-˙AMbIAM-˙c=M-˙AMcIAb=c
34 33 ralrimivva φA=MbPcPM-˙b=M-˙AMbIAM-˙c=M-˙AMcIAb=c
35 19 34 jca φA=MbPM-˙b=M-˙AMbIAbPcPM-˙b=M-˙AMbIAM-˙c=M-˙AMcIAb=c
36 4 adantr φAMG𝒢Tarski
37 5 adantr φAMAP
38 6 adantr φAMMP
39 1 2 3 36 37 38 38 37 axtgsegcon φAMbPMAIbM-˙b=M-˙A
40 ancom MAIbM-˙b=M-˙AM-˙b=M-˙AMAIb
41 4 adantr φbPG𝒢Tarski
42 5 adantr φbPAP
43 6 adantr φbPMP
44 simpr φbPbP
45 1 2 3 41 42 43 44 tgbtwncomb φbPMAIbMbIA
46 45 anbi2d φbPM-˙b=M-˙AMAIbM-˙b=M-˙AMbIA
47 40 46 bitrid φbPMAIbM-˙b=M-˙AM-˙b=M-˙AMbIA
48 47 rexbidva φbPMAIbM-˙b=M-˙AbPM-˙b=M-˙AMbIA
49 48 adantr φAMbPMAIbM-˙b=M-˙AbPM-˙b=M-˙AMbIA
50 39 49 mpbid φAMbPM-˙b=M-˙AMbIA
51 4 ad3antrrr φAMbPcPM-˙b=M-˙AMbIAM-˙c=M-˙AMcIAG𝒢Tarski
52 6 ad3antrrr φAMbPcPM-˙b=M-˙AMbIAM-˙c=M-˙AMcIAMP
53 5 ad3antrrr φAMbPcPM-˙b=M-˙AMbIAM-˙c=M-˙AMcIAAP
54 simplrl φAMbPcPM-˙b=M-˙AMbIAM-˙c=M-˙AMcIAbP
55 simplrr φAMbPcPM-˙b=M-˙AMbIAM-˙c=M-˙AMcIAcP
56 simpllr φAMbPcPM-˙b=M-˙AMbIAM-˙c=M-˙AMcIAAM
57 simprlr φAMbPcPM-˙b=M-˙AMbIAM-˙c=M-˙AMcIAMbIA
58 1 2 3 51 54 52 53 57 tgbtwncom φAMbPcPM-˙b=M-˙AMbIAM-˙c=M-˙AMcIAMAIb
59 simprrr φAMbPcPM-˙b=M-˙AMbIAM-˙c=M-˙AMcIAMcIA
60 1 2 3 51 55 52 53 59 tgbtwncom φAMbPcPM-˙b=M-˙AMbIAM-˙c=M-˙AMcIAMAIc
61 simprll φAMbPcPM-˙b=M-˙AMbIAM-˙c=M-˙AMcIAM-˙b=M-˙A
62 simprrl φAMbPcPM-˙b=M-˙AMbIAM-˙c=M-˙AMcIAM-˙c=M-˙A
63 1 2 3 51 52 52 53 53 54 55 56 58 60 61 62 tgsegconeq φAMbPcPM-˙b=M-˙AMbIAM-˙c=M-˙AMcIAb=c
64 63 ex φAMbPcPM-˙b=M-˙AMbIAM-˙c=M-˙AMcIAb=c
65 64 ralrimivva φAMbPcPM-˙b=M-˙AMbIAM-˙c=M-˙AMcIAb=c
66 50 65 jca φAMbPM-˙b=M-˙AMbIAbPcPM-˙b=M-˙AMbIAM-˙c=M-˙AMcIAb=c
67 35 66 pm2.61dane φbPM-˙b=M-˙AMbIAbPcPM-˙b=M-˙AMbIAM-˙c=M-˙AMcIAb=c
68 oveq2 b=cM-˙b=M-˙c
69 68 eqeq1d b=cM-˙b=M-˙AM-˙c=M-˙A
70 oveq1 b=cbIA=cIA
71 70 eleq2d b=cMbIAMcIA
72 69 71 anbi12d b=cM-˙b=M-˙AMbIAM-˙c=M-˙AMcIA
73 72 reu4 ∃!bPM-˙b=M-˙AMbIAbPM-˙b=M-˙AMbIAbPcPM-˙b=M-˙AMbIAM-˙c=M-˙AMcIAb=c
74 67 73 sylibr φ∃!bPM-˙b=M-˙AMbIA