Metamath Proof Explorer


Theorem modlt0b

Description: An integer with an absolute value less than a positive integer is 0 modulo the positive integer iff it is 0. (Contributed by AV, 21-Nov-2025)

Ref Expression
Assertion modlt0b N X X < N X mod N = 0 X = 0

Proof

Step Hyp Ref Expression
1 pm3.22 N X X N
2 1 3adant3 N X X < N X N
3 mod0mul X N X mod N = 0 z X = z N
4 2 3 syl N X X < N X mod N = 0 z X = z N
5 simpr N X X < N z X = z N X = z N
6 fveq2 X = z N X = z N
7 6 adantl N z X = z N X = z N
8 7 breq1d N z X = z N X < N z N < N
9 zcn z z
10 nncn N N
11 absmul z N z N = z N
12 9 10 11 syl2anr N z z N = z N
13 nnre N N
14 nnnn0 N N 0
15 14 nn0ge0d N 0 N
16 13 15 absidd N N = N
17 16 adantr N z N = N
18 17 oveq2d N z z N = z N
19 12 18 eqtrd N z z N = z N
20 19 breq1d N z z N < N z N < N
21 9 abscld z z
22 21 adantl N z z
23 13 adantr N z N
24 nngt0 N 0 < N
25 13 24 jca N N 0 < N
26 25 adantr N z N 0 < N
27 ltmuldiv z N N 0 < N z N < N z < N N
28 22 23 26 27 syl3anc N z z N < N z < N N
29 nnne0 N N 0
30 10 29 dividd N N N = 1
31 30 adantr N z N N = 1
32 31 breq2d N z z < N N z < 1
33 28 32 bitrd N z z N < N z < 1
34 zabs0b z z < 1 z = 0
35 34 adantl N z z < 1 z = 0
36 oveq1 z = 0 z N = 0 N
37 10 mul02d N 0 N = 0
38 36 37 sylan9eqr N z = 0 z N = 0
39 38 ex N z = 0 z N = 0
40 39 adantr N z z = 0 z N = 0
41 35 40 sylbid N z z < 1 z N = 0
42 33 41 sylbid N z z N < N z N = 0
43 20 42 sylbid N z z N < N z N = 0
44 43 adantr N z X = z N z N < N z N = 0
45 8 44 sylbid N z X = z N X < N z N = 0
46 45 expl N z X = z N X < N z N = 0
47 46 adantr N X z X = z N X < N z N = 0
48 47 com23 N X X < N z X = z N z N = 0
49 48 3impia N X X < N z X = z N z N = 0
50 49 impl N X X < N z X = z N z N = 0
51 5 50 eqtrd N X X < N z X = z N X = 0
52 51 ex N X X < N z X = z N X = 0
53 52 rexlimdva N X X < N z X = z N X = 0
54 4 53 syld N X X < N X mod N = 0 X = 0
55 oveq1 X = 0 X mod N = 0 mod N
56 nnrp N N +
57 0mod N + 0 mod N = 0
58 56 57 syl N 0 mod N = 0
59 58 3ad2ant1 N X X < N 0 mod N = 0
60 55 59 sylan9eqr N X X < N X = 0 X mod N = 0
61 60 ex N X X < N X = 0 X mod N = 0
62 54 61 impbid N X X < N X mod N = 0 X = 0