| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pm3.22 |
|
| 2 |
1
|
3adant3 |
|
| 3 |
|
mod0mul |
|
| 4 |
2 3
|
syl |
|
| 5 |
|
simpr |
|
| 6 |
|
fveq2 |
|
| 7 |
6
|
adantl |
|
| 8 |
7
|
breq1d |
|
| 9 |
|
zcn |
|
| 10 |
|
nncn |
|
| 11 |
|
absmul |
|
| 12 |
9 10 11
|
syl2anr |
|
| 13 |
|
nnre |
|
| 14 |
|
nnnn0 |
|
| 15 |
14
|
nn0ge0d |
|
| 16 |
13 15
|
absidd |
|
| 17 |
16
|
adantr |
|
| 18 |
17
|
oveq2d |
|
| 19 |
12 18
|
eqtrd |
|
| 20 |
19
|
breq1d |
|
| 21 |
9
|
abscld |
|
| 22 |
21
|
adantl |
|
| 23 |
13
|
adantr |
|
| 24 |
|
nngt0 |
|
| 25 |
13 24
|
jca |
|
| 26 |
25
|
adantr |
|
| 27 |
|
ltmuldiv |
|
| 28 |
22 23 26 27
|
syl3anc |
|
| 29 |
|
nnne0 |
|
| 30 |
10 29
|
dividd |
|
| 31 |
30
|
adantr |
|
| 32 |
31
|
breq2d |
|
| 33 |
28 32
|
bitrd |
|
| 34 |
|
zabs0b |
|
| 35 |
34
|
adantl |
|
| 36 |
|
oveq1 |
|
| 37 |
10
|
mul02d |
|
| 38 |
36 37
|
sylan9eqr |
|
| 39 |
38
|
ex |
|
| 40 |
39
|
adantr |
|
| 41 |
35 40
|
sylbid |
|
| 42 |
33 41
|
sylbid |
|
| 43 |
20 42
|
sylbid |
|
| 44 |
43
|
adantr |
|
| 45 |
8 44
|
sylbid |
|
| 46 |
45
|
expl |
|
| 47 |
46
|
adantr |
|
| 48 |
47
|
com23 |
|
| 49 |
48
|
3impia |
|
| 50 |
49
|
impl |
|
| 51 |
5 50
|
eqtrd |
|
| 52 |
51
|
ex |
|
| 53 |
52
|
rexlimdva |
|
| 54 |
4 53
|
syld |
|
| 55 |
|
oveq1 |
|
| 56 |
|
nnrp |
|
| 57 |
|
0mod |
|
| 58 |
56 57
|
syl |
|
| 59 |
58
|
3ad2ant1 |
|
| 60 |
55 59
|
sylan9eqr |
|
| 61 |
60
|
ex |
|
| 62 |
54 61
|
impbid |
|