Metamath Proof Explorer


Theorem mod2addne

Description: The sums of a nonnegative integer less than the modulus and two integers whose difference is less than the modulus are not equal modulo the modulus. (Contributed by AV, 15-Nov-2025)

Ref Expression
Hypothesis mod2addne.i I = 0 ..^ N
Assertion mod2addne N X I A B A B 1 ..^ N X + A mod N X + B mod N

Proof

Step Hyp Ref Expression
1 mod2addne.i I = 0 ..^ N
2 simp1 N X I A B A B 1 ..^ N N
3 zsubcl A B A B
4 3 3adant1 X I A B A B
5 4 3ad2ant2 N X I A B A B 1 ..^ N A B
6 elfzolt2 A B 1 ..^ N A B < N
7 6 3ad2ant3 N X I A B A B 1 ..^ N A B < N
8 modlt0b N A B A B < N A B mod N = 0 A B = 0
9 2 5 7 8 syl3anc N X I A B A B 1 ..^ N A B mod N = 0 A B = 0
10 fveq2 A B = 0 A B = 0
11 10 eleq1d A B = 0 A B 1 ..^ N 0 1 ..^ N
12 11 adantl N X I A B A B = 0 A B 1 ..^ N 0 1 ..^ N
13 abs0 0 = 0
14 13 eleq1i 0 1 ..^ N 0 1 ..^ N
15 14 a1i N X I A B 0 1 ..^ N 0 1 ..^ N
16 elfzo1 0 1 ..^ N 0 N 0 < N
17 0nnn ¬ 0
18 17 pm2.21i 0 ¬ A B mod N = 0
19 18 3ad2ant1 0 N 0 < N ¬ A B mod N = 0
20 16 19 sylbi 0 1 ..^ N ¬ A B mod N = 0
21 20 a1i N X I A B 0 1 ..^ N ¬ A B mod N = 0
22 15 21 sylbid N X I A B 0 1 ..^ N ¬ A B mod N = 0
23 22 adantr N X I A B A B = 0 0 1 ..^ N ¬ A B mod N = 0
24 12 23 sylbid N X I A B A B = 0 A B 1 ..^ N ¬ A B mod N = 0
25 24 ex N X I A B A B = 0 A B 1 ..^ N ¬ A B mod N = 0
26 25 com23 N X I A B A B 1 ..^ N A B = 0 ¬ A B mod N = 0
27 26 3impia N X I A B A B 1 ..^ N A B = 0 ¬ A B mod N = 0
28 9 27 sylbid N X I A B A B 1 ..^ N A B mod N = 0 ¬ A B mod N = 0
29 28 pm2.01d N X I A B A B 1 ..^ N ¬ A B mod N = 0
30 simp2 X I A B A
31 30 adantl N X I A B A
32 simp3 X I A B B
33 32 adantl N X I A B B
34 simpl N X I A B N
35 31 33 34 3jca N X I A B A B N
36 35 3adant3 N X I A B A B 1 ..^ N A B N
37 difmod0 A B N A B mod N = 0 A mod N = B mod N
38 36 37 syl N X I A B A B 1 ..^ N A B mod N = 0 A mod N = B mod N
39 29 38 mtbid N X I A B A B 1 ..^ N ¬ A mod N = B mod N
40 elfzoelz X 0 ..^ N X
41 40 1 eleq2s X I X
42 41 3ad2ant1 X I A B X
43 42 zcnd X I A B X
44 30 zcnd X I A B A
45 43 44 addcomd X I A B X + A = A + X
46 45 oveq1d X I A B X + A mod N = A + X mod N
47 32 zcnd X I A B B
48 43 47 addcomd X I A B X + B = B + X
49 48 oveq1d X I A B X + B mod N = B + X mod N
50 46 49 eqeq12d X I A B X + A mod N = X + B mod N A + X mod N = B + X mod N
51 50 3ad2ant2 N X I A B A B 1 ..^ N X + A mod N = X + B mod N A + X mod N = B + X mod N
52 zre A A
53 zre B B
54 52 53 anim12i A B A B
55 54 3adant1 X I A B A B
56 55 adantl N X I A B A B
57 nnrp N N +
58 41 zred X I X
59 58 3ad2ant1 X I A B X
60 57 59 anim12ci N X I A B X N +
61 56 60 jca N X I A B A B X N +
62 61 3adant3 N X I A B A B 1 ..^ N A B X N +
63 modaddb A B X N + A mod N = B mod N A + X mod N = B + X mod N
64 62 63 syl N X I A B A B 1 ..^ N A mod N = B mod N A + X mod N = B + X mod N
65 51 64 bitr4d N X I A B A B 1 ..^ N X + A mod N = X + B mod N A mod N = B mod N
66 65 necon3abid N X I A B A B 1 ..^ N X + A mod N X + B mod N ¬ A mod N = B mod N
67 39 66 mpbird N X I A B A B 1 ..^ N X + A mod N X + B mod N