Metamath Proof Explorer


Theorem mp2pm2mplem5

Description: Lemma 5 for mp2pm2mp . (Contributed by AV, 12-Oct-2019) (Revised by AV, 5-Dec-2019)

Ref Expression
Hypotheses mp2pm2mp.a A=NMatR
mp2pm2mp.q Q=Poly1A
mp2pm2mp.l L=BaseQ
mp2pm2mp.m ·˙=P
mp2pm2mp.e E=mulGrpP
mp2pm2mp.y Y=var1R
mp2pm2mp.i I=pLiN,jNPk0icoe1pkj·˙kEY
mp2pm2mplem2.p P=Poly1R
mp2pm2mplem5.m ˙=Q
mp2pm2mplem5.e ×˙=mulGrpQ
mp2pm2mplem5.x X=var1A
Assertion mp2pm2mplem5 NFinRRingOLfinSupp0Qk0IOdecompPMatk˙k×˙X

Proof

Step Hyp Ref Expression
1 mp2pm2mp.a A=NMatR
2 mp2pm2mp.q Q=Poly1A
3 mp2pm2mp.l L=BaseQ
4 mp2pm2mp.m ·˙=P
5 mp2pm2mp.e E=mulGrpP
6 mp2pm2mp.y Y=var1R
7 mp2pm2mp.i I=pLiN,jNPk0icoe1pkj·˙kEY
8 mp2pm2mplem2.p P=Poly1R
9 mp2pm2mplem5.m ˙=Q
10 mp2pm2mplem5.e ×˙=mulGrpQ
11 mp2pm2mplem5.x X=var1A
12 nn0ex 0V
13 12 a1i NFinRRingOL0V
14 1 matring NFinRRingARing
15 2 ply1lmod ARingQLMod
16 14 15 syl NFinRRingQLMod
17 16 3adant3 NFinRRingOLQLMod
18 14 3adant3 NFinRRingOLARing
19 2 ply1sca ARingA=ScalarQ
20 18 19 syl NFinRRingOLA=ScalarQ
21 simpl2 NFinRRingOLk0RRing
22 eqid NMatP=NMatP
23 eqid BaseNMatP=BaseNMatP
24 1 2 3 8 4 5 6 7 22 23 mply1topmatcl NFinRRingOLIOBaseNMatP
25 24 adantr NFinRRingOLk0IOBaseNMatP
26 simpr NFinRRingOLk0k0
27 eqid BaseA=BaseA
28 8 22 23 1 27 decpmatcl RRingIOBaseNMatPk0IOdecompPMatkBaseA
29 21 25 26 28 syl3anc NFinRRingOLk0IOdecompPMatkBaseA
30 eqid mulGrpQ=mulGrpQ
31 2 11 30 10 3 ply1moncl ARingk0k×˙XL
32 18 31 sylan NFinRRingOLk0k×˙XL
33 eqid 0Q=0Q
34 eqid 0A=0A
35 fveq2 k=lcoe1pk=coe1pl
36 35 oveqd k=licoe1pkj=icoe1plj
37 oveq1 k=lkEY=lEY
38 36 37 oveq12d k=licoe1pkj·˙kEY=icoe1plj·˙lEY
39 38 cbvmptv k0icoe1pkj·˙kEY=l0icoe1plj·˙lEY
40 39 oveq2i Pk0icoe1pkj·˙kEY=Pl0icoe1plj·˙lEY
41 40 a1i iNjNPk0icoe1pkj·˙kEY=Pl0icoe1plj·˙lEY
42 41 mpoeq3ia iN,jNPk0icoe1pkj·˙kEY=iN,jNPl0icoe1plj·˙lEY
43 42 mpteq2i pLiN,jNPk0icoe1pkj·˙kEY=pLiN,jNPl0icoe1plj·˙lEY
44 7 43 eqtri I=pLiN,jNPl0icoe1plj·˙lEY
45 1 2 3 4 5 6 44 8 mp2pm2mplem4 NFinRRingOLk0IOdecompPMatk=coe1Ok
46 45 mpteq2dva NFinRRingOLk0IOdecompPMatk=k0coe1Ok
47 2 3 34 mptcoe1fsupp ARingOLfinSupp0Ak0coe1Ok
48 14 47 stoic3 NFinRRingOLfinSupp0Ak0coe1Ok
49 46 48 eqbrtrd NFinRRingOLfinSupp0Ak0IOdecompPMatk
50 13 17 20 3 29 32 33 34 9 49 mptscmfsupp0 NFinRRingOLfinSupp0Qk0IOdecompPMatk˙k×˙X