| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mp2pm2mp.a |
|
| 2 |
|
mp2pm2mp.q |
|
| 3 |
|
mp2pm2mp.l |
|
| 4 |
|
mp2pm2mp.m |
|
| 5 |
|
mp2pm2mp.e |
|
| 6 |
|
mp2pm2mp.y |
|
| 7 |
|
mp2pm2mp.i |
|
| 8 |
|
mp2pm2mplem2.p |
|
| 9 |
|
mp2pm2mplem5.m |
|
| 10 |
|
mp2pm2mplem5.e |
|
| 11 |
|
mp2pm2mplem5.x |
|
| 12 |
|
nn0ex |
|
| 13 |
12
|
a1i |
|
| 14 |
1
|
matring |
|
| 15 |
2
|
ply1lmod |
|
| 16 |
14 15
|
syl |
|
| 17 |
16
|
3adant3 |
|
| 18 |
14
|
3adant3 |
|
| 19 |
2
|
ply1sca |
|
| 20 |
18 19
|
syl |
|
| 21 |
|
simpl2 |
|
| 22 |
|
eqid |
|
| 23 |
|
eqid |
|
| 24 |
1 2 3 8 4 5 6 7 22 23
|
mply1topmatcl |
|
| 25 |
24
|
adantr |
|
| 26 |
|
simpr |
|
| 27 |
|
eqid |
|
| 28 |
8 22 23 1 27
|
decpmatcl |
|
| 29 |
21 25 26 28
|
syl3anc |
|
| 30 |
|
eqid |
|
| 31 |
2 11 30 10 3
|
ply1moncl |
|
| 32 |
18 31
|
sylan |
|
| 33 |
|
eqid |
|
| 34 |
|
eqid |
|
| 35 |
|
fveq2 |
|
| 36 |
35
|
oveqd |
|
| 37 |
|
oveq1 |
|
| 38 |
36 37
|
oveq12d |
|
| 39 |
38
|
cbvmptv |
|
| 40 |
39
|
oveq2i |
|
| 41 |
40
|
a1i |
|
| 42 |
41
|
mpoeq3ia |
|
| 43 |
42
|
mpteq2i |
|
| 44 |
7 43
|
eqtri |
|
| 45 |
1 2 3 4 5 6 44 8
|
mp2pm2mplem4 |
|
| 46 |
45
|
mpteq2dva |
|
| 47 |
2 3 34
|
mptcoe1fsupp |
|
| 48 |
14 47
|
stoic3 |
|
| 49 |
46 48
|
eqbrtrd |
|
| 50 |
13 17 20 3 29 32 33 34 9 49
|
mptscmfsupp0 |
|