Description: The set of polynomials is closed under multiplication, i.e. it is a subring of the set of power series. (Contributed by Mario Carneiro, 9-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mplsubg.s | |
|
mplsubg.p | |
||
mplsubg.u | |
||
mplsubg.i | |
||
mpllss.r | |
||
Assertion | mplsubrg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mplsubg.s | |
|
2 | mplsubg.p | |
|
3 | mplsubg.u | |
|
4 | mplsubg.i | |
|
5 | mpllss.r | |
|
6 | ringgrp | |
|
7 | 5 6 | syl | |
8 | 1 2 3 4 7 | mplsubg | |
9 | 1 4 5 | psrring | |
10 | eqid | |
|
11 | eqid | |
|
12 | 10 11 | ringidcl | |
13 | 9 12 | syl | |
14 | eqid | |
|
15 | eqid | |
|
16 | eqid | |
|
17 | 1 4 5 14 15 16 11 | psr1 | |
18 | ovex | |
|
19 | 18 | mptrabex | |
20 | funmpt | |
|
21 | fvex | |
|
22 | 19 20 21 | 3pm3.2i | |
23 | 22 | a1i | |
24 | snfi | |
|
25 | 24 | a1i | |
26 | eldifsni | |
|
27 | 26 | adantl | |
28 | ifnefalse | |
|
29 | 27 28 | syl | |
30 | 18 | rabex | |
31 | 30 | a1i | |
32 | 29 31 | suppss2 | |
33 | suppssfifsupp | |
|
34 | 23 25 32 33 | syl12anc | |
35 | 17 34 | eqbrtrd | |
36 | 2 1 10 15 3 | mplelbas | |
37 | 13 35 36 | sylanbrc | |
38 | 4 | adantr | |
39 | 5 | adantr | |
40 | eqid | |
|
41 | eqid | |
|
42 | simprl | |
|
43 | simprr | |
|
44 | 1 2 3 38 39 14 15 40 41 42 43 | mplsubrglem | |
45 | 44 | ralrimivva | |
46 | eqid | |
|
47 | 10 11 46 | issubrg2 | |
48 | 9 47 | syl | |
49 | 8 37 45 48 | mpbir3and | |