Metamath Proof Explorer


Theorem mplsubrg

Description: The set of polynomials is closed under multiplication, i.e. it is a subring of the set of power series. (Contributed by Mario Carneiro, 9-Jan-2015)

Ref Expression
Hypotheses mplsubg.s S=ImPwSerR
mplsubg.p P=ImPolyR
mplsubg.u U=BaseP
mplsubg.i φIW
mpllss.r φRRing
Assertion mplsubrg φUSubRingS

Proof

Step Hyp Ref Expression
1 mplsubg.s S=ImPwSerR
2 mplsubg.p P=ImPolyR
3 mplsubg.u U=BaseP
4 mplsubg.i φIW
5 mpllss.r φRRing
6 ringgrp RRingRGrp
7 5 6 syl φRGrp
8 1 2 3 4 7 mplsubg φUSubGrpS
9 1 4 5 psrring φSRing
10 eqid BaseS=BaseS
11 eqid 1S=1S
12 10 11 ringidcl SRing1SBaseS
13 9 12 syl φ1SBaseS
14 eqid f0I|f-1Fin=f0I|f-1Fin
15 eqid 0R=0R
16 eqid 1R=1R
17 1 4 5 14 15 16 11 psr1 φ1S=kf0I|f-1Finifk=I×01R0R
18 ovex 0IV
19 18 mptrabex kf0I|f-1Finifk=I×01R0RV
20 funmpt Funkf0I|f-1Finifk=I×01R0R
21 fvex 0RV
22 19 20 21 3pm3.2i kf0I|f-1Finifk=I×01R0RVFunkf0I|f-1Finifk=I×01R0R0RV
23 22 a1i φkf0I|f-1Finifk=I×01R0RVFunkf0I|f-1Finifk=I×01R0R0RV
24 snfi I×0Fin
25 24 a1i φI×0Fin
26 eldifsni kf0I|f-1FinI×0kI×0
27 26 adantl φkf0I|f-1FinI×0kI×0
28 ifnefalse kI×0ifk=I×01R0R=0R
29 27 28 syl φkf0I|f-1FinI×0ifk=I×01R0R=0R
30 18 rabex f0I|f-1FinV
31 30 a1i φf0I|f-1FinV
32 29 31 suppss2 φkf0I|f-1Finifk=I×01R0Rsupp0RI×0
33 suppssfifsupp kf0I|f-1Finifk=I×01R0RVFunkf0I|f-1Finifk=I×01R0R0RVI×0Finkf0I|f-1Finifk=I×01R0Rsupp0RI×0finSupp0Rkf0I|f-1Finifk=I×01R0R
34 23 25 32 33 syl12anc φfinSupp0Rkf0I|f-1Finifk=I×01R0R
35 17 34 eqbrtrd φfinSupp0R1S
36 2 1 10 15 3 mplelbas 1SU1SBaseSfinSupp0R1S
37 13 35 36 sylanbrc φ1SU
38 4 adantr φxUyUIW
39 5 adantr φxUyURRing
40 eqid f+supp0Rx×supp0Ry=f+supp0Rx×supp0Ry
41 eqid R=R
42 simprl φxUyUxU
43 simprr φxUyUyU
44 1 2 3 38 39 14 15 40 41 42 43 mplsubrglem φxUyUxSyU
45 44 ralrimivva φxUyUxSyU
46 eqid S=S
47 10 11 46 issubrg2 SRingUSubRingSUSubGrpS1SUxUyUxSyU
48 9 47 syl φUSubRingSUSubGrpS1SUxUyUxSyU
49 8 37 45 48 mpbir3and φUSubRingS