| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mplsubg.s |  | 
						
							| 2 |  | mplsubg.p |  | 
						
							| 3 |  | mplsubg.u |  | 
						
							| 4 |  | mplsubg.i |  | 
						
							| 5 |  | mpllss.r |  | 
						
							| 6 |  | ringgrp |  | 
						
							| 7 | 5 6 | syl |  | 
						
							| 8 | 1 2 3 4 7 | mplsubg |  | 
						
							| 9 | 1 4 5 | psrring |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 | 10 11 | ringidcl |  | 
						
							| 13 | 9 12 | syl |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 |  | eqid |  | 
						
							| 17 | 1 4 5 14 15 16 11 | psr1 |  | 
						
							| 18 |  | ovex |  | 
						
							| 19 | 18 | mptrabex |  | 
						
							| 20 |  | funmpt |  | 
						
							| 21 |  | fvex |  | 
						
							| 22 | 19 20 21 | 3pm3.2i |  | 
						
							| 23 | 22 | a1i |  | 
						
							| 24 |  | snfi |  | 
						
							| 25 | 24 | a1i |  | 
						
							| 26 |  | eldifsni |  | 
						
							| 27 | 26 | adantl |  | 
						
							| 28 |  | ifnefalse |  | 
						
							| 29 | 27 28 | syl |  | 
						
							| 30 | 18 | rabex |  | 
						
							| 31 | 30 | a1i |  | 
						
							| 32 | 29 31 | suppss2 |  | 
						
							| 33 |  | suppssfifsupp |  | 
						
							| 34 | 23 25 32 33 | syl12anc |  | 
						
							| 35 | 17 34 | eqbrtrd |  | 
						
							| 36 | 2 1 10 15 3 | mplelbas |  | 
						
							| 37 | 13 35 36 | sylanbrc |  | 
						
							| 38 | 4 | adantr |  | 
						
							| 39 | 5 | adantr |  | 
						
							| 40 |  | eqid |  | 
						
							| 41 |  | eqid |  | 
						
							| 42 |  | simprl |  | 
						
							| 43 |  | simprr |  | 
						
							| 44 | 1 2 3 38 39 14 15 40 41 42 43 | mplsubrglem |  | 
						
							| 45 | 44 | ralrimivva |  | 
						
							| 46 |  | eqid |  | 
						
							| 47 | 10 11 46 | issubrg2 |  | 
						
							| 48 | 9 47 | syl |  | 
						
							| 49 | 8 37 45 48 | mpbir3and |  |