| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mptnn0fsupp.0 |  | 
						
							| 2 |  | mptnn0fsupp.c |  | 
						
							| 3 |  | mptnn0fsuppr.s |  | 
						
							| 4 |  | fsuppimp |  | 
						
							| 5 | 2 | ralrimiva |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 | 6 | fnmpt |  | 
						
							| 8 | 5 7 | syl |  | 
						
							| 9 |  | nn0ex |  | 
						
							| 10 | 9 | a1i |  | 
						
							| 11 | 1 | elexd |  | 
						
							| 12 | 8 10 11 | 3jca |  | 
						
							| 13 | 12 | adantr |  | 
						
							| 14 |  | suppvalfn |  | 
						
							| 15 | 13 14 | syl |  | 
						
							| 16 |  | simpr |  | 
						
							| 17 | 5 | adantr |  | 
						
							| 18 | 17 | adantr |  | 
						
							| 19 |  | rspcsbela |  | 
						
							| 20 | 16 18 19 | syl2anc |  | 
						
							| 21 | 6 | fvmpts |  | 
						
							| 22 | 16 20 21 | syl2anc |  | 
						
							| 23 | 22 | neeq1d |  | 
						
							| 24 | 23 | rabbidva |  | 
						
							| 25 | 15 24 | eqtrd |  | 
						
							| 26 | 25 | eleq1d |  | 
						
							| 27 | 26 | biimpd |  | 
						
							| 28 | 27 | expcom |  | 
						
							| 29 | 28 | com23 |  | 
						
							| 30 | 29 | imp |  | 
						
							| 31 | 4 30 | syl |  | 
						
							| 32 | 3 31 | mpcom |  | 
						
							| 33 |  | rabssnn0fi |  | 
						
							| 34 |  | nne |  | 
						
							| 35 | 34 | imbi2i |  | 
						
							| 36 | 35 | ralbii |  | 
						
							| 37 | 36 | rexbii |  | 
						
							| 38 | 33 37 | bitri |  | 
						
							| 39 | 32 38 | sylib |  |