| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mrsubccat.s |  | 
						
							| 2 |  | n0i |  | 
						
							| 3 | 1 | rnfvprc |  | 
						
							| 4 | 2 3 | nsyl2 |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 | 5 6 1 | mrsubff |  | 
						
							| 8 |  | ffun |  | 
						
							| 9 | 4 7 8 | 3syl |  | 
						
							| 10 | 5 6 1 | mrsubrn |  | 
						
							| 11 | 10 | eleq2i |  | 
						
							| 12 | 11 | biimpi |  | 
						
							| 13 |  | fvelima |  | 
						
							| 14 | 9 12 13 | syl2anc |  | 
						
							| 15 |  | elmapi |  | 
						
							| 16 | 15 | adantl |  | 
						
							| 17 |  | ssidd |  | 
						
							| 18 |  | wrd0 |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 | 19 5 6 | mrexval |  | 
						
							| 21 | 20 | adantr |  | 
						
							| 22 | 18 21 | eleqtrrid |  | 
						
							| 23 |  | eqid |  | 
						
							| 24 | 19 5 6 1 23 | mrsubval |  | 
						
							| 25 | 16 17 22 24 | syl3anc |  | 
						
							| 26 |  | co02 |  | 
						
							| 27 | 26 | oveq2i |  | 
						
							| 28 | 23 | frmd0 |  | 
						
							| 29 | 28 | gsum0 |  | 
						
							| 30 | 27 29 | eqtri |  | 
						
							| 31 | 25 30 | eqtrdi |  | 
						
							| 32 |  | fveq1 |  | 
						
							| 33 | 32 | eqeq1d |  | 
						
							| 34 | 31 33 | syl5ibcom |  | 
						
							| 35 | 34 | rexlimdva |  | 
						
							| 36 | 4 14 35 | sylc |  |