Metamath Proof Explorer


Theorem mrsub0

Description: The value of the substituted empty string. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypothesis mrsubccat.s S=mRSubstT
Assertion mrsub0 FranSF=

Proof

Step Hyp Ref Expression
1 mrsubccat.s S=mRSubstT
2 n0i FranS¬ranS=
3 1 rnfvprc ¬TVranS=
4 2 3 nsyl2 FranSTV
5 eqid mVRT=mVRT
6 eqid mRExT=mRExT
7 5 6 1 mrsubff TVS:mRExT𝑝𝑚mVRTmRExTmRExT
8 ffun S:mRExT𝑝𝑚mVRTmRExTmRExTFunS
9 4 7 8 3syl FranSFunS
10 5 6 1 mrsubrn ranS=SmRExTmVRT
11 10 eleq2i FranSFSmRExTmVRT
12 11 biimpi FranSFSmRExTmVRT
13 fvelima FunSFSmRExTmVRTfmRExTmVRTSf=F
14 9 12 13 syl2anc FranSfmRExTmVRTSf=F
15 elmapi fmRExTmVRTf:mVRTmRExT
16 15 adantl TVfmRExTmVRTf:mVRTmRExT
17 ssidd TVfmRExTmVRTmVRTmVRT
18 wrd0 WordmCNTmVRT
19 eqid mCNT=mCNT
20 19 5 6 mrexval TVmRExT=WordmCNTmVRT
21 20 adantr TVfmRExTmVRTmRExT=WordmCNTmVRT
22 18 21 eleqtrrid TVfmRExTmVRTmRExT
23 eqid freeMndmCNTmVRT=freeMndmCNTmVRT
24 19 5 6 1 23 mrsubval f:mVRTmRExTmVRTmVRTmRExTSf=freeMndmCNTmVRTvmCNTmVRTifvmVRTfv⟨“v”⟩
25 16 17 22 24 syl3anc TVfmRExTmVRTSf=freeMndmCNTmVRTvmCNTmVRTifvmVRTfv⟨“v”⟩
26 co02 vmCNTmVRTifvmVRTfv⟨“v”⟩=
27 26 oveq2i freeMndmCNTmVRTvmCNTmVRTifvmVRTfv⟨“v”⟩=freeMndmCNTmVRT
28 23 frmd0 =0freeMndmCNTmVRT
29 28 gsum0 freeMndmCNTmVRT=
30 27 29 eqtri freeMndmCNTmVRTvmCNTmVRTifvmVRTfv⟨“v”⟩=
31 25 30 eqtrdi TVfmRExTmVRTSf=
32 fveq1 Sf=FSf=F
33 32 eqeq1d Sf=FSf=F=
34 31 33 syl5ibcom TVfmRExTmVRTSf=FF=
35 34 rexlimdva TVfmRExTmVRTSf=FF=
36 4 14 35 sylc FranSF=