Metamath Proof Explorer


Theorem mulerpq

Description: Multiplication is compatible with the equivalence relation. (Contributed by Mario Carneiro, 8-May-2013) (New usage is discouraged.)

Ref Expression
Assertion mulerpq āŠ¢/š‘øā”Aā‹…š‘ø/š‘øā”B=/š‘øā”Aā‹…š‘š‘øB

Proof

Step Hyp Ref Expression
1 nqercl āŠ¢Aāˆˆš‘µĆ—š‘µā†’/š‘øā”Aāˆˆš‘ø
2 nqercl āŠ¢Bāˆˆš‘µĆ—š‘µā†’/š‘øā”Bāˆˆš‘ø
3 mulpqnq āŠ¢/š‘øā”Aāˆˆš‘øāˆ§/š‘øā”Bāˆˆš‘øā†’/š‘øā”Aā‹…š‘ø/š‘øā”B=/š‘øā”/š‘øā”Aā‹…š‘š‘ø/š‘øā”B
4 1 2 3 syl2an āŠ¢Aāˆˆš‘µĆ—š‘µāˆ§Bāˆˆš‘µĆ—š‘µā†’/š‘øā”Aā‹…š‘ø/š‘øā”B=/š‘øā”/š‘øā”Aā‹…š‘š‘ø/š‘øā”B
5 enqer āŠ¢~š‘øErš‘µĆ—š‘µ
6 5 a1i āŠ¢Aāˆˆš‘µĆ—š‘µāˆ§Bāˆˆš‘µĆ—š‘µā†’~š‘øErš‘µĆ—š‘µ
7 nqerrel āŠ¢Aāˆˆš‘µĆ—š‘µā†’A~š‘ø/š‘øā”A
8 7 adantr āŠ¢Aāˆˆš‘µĆ—š‘µāˆ§Bāˆˆš‘µĆ—š‘µā†’A~š‘ø/š‘øā”A
9 elpqn āŠ¢/š‘øā”Aāˆˆš‘øā†’/š‘øā”Aāˆˆš‘µĆ—š‘µ
10 1 9 syl āŠ¢Aāˆˆš‘µĆ—š‘µā†’/š‘øā”Aāˆˆš‘µĆ—š‘µ
11 mulerpqlem āŠ¢Aāˆˆš‘µĆ—š‘µāˆ§/š‘øā”Aāˆˆš‘µĆ—š‘µāˆ§Bāˆˆš‘µĆ—š‘µā†’A~š‘ø/š‘øā”Aā†”Aā‹…š‘š‘øB~š‘ø/š‘øā”Aā‹…š‘š‘øB
12 11 3exp āŠ¢Aāˆˆš‘µĆ—š‘µā†’/š‘øā”Aāˆˆš‘µĆ—š‘µā†’Bāˆˆš‘µĆ—š‘µā†’A~š‘ø/š‘øā”Aā†”Aā‹…š‘š‘øB~š‘ø/š‘øā”Aā‹…š‘š‘øB
13 10 12 mpd āŠ¢Aāˆˆš‘µĆ—š‘µā†’Bāˆˆš‘µĆ—š‘µā†’A~š‘ø/š‘øā”Aā†”Aā‹…š‘š‘øB~š‘ø/š‘øā”Aā‹…š‘š‘øB
14 13 imp āŠ¢Aāˆˆš‘µĆ—š‘µāˆ§Bāˆˆš‘µĆ—š‘µā†’A~š‘ø/š‘øā”Aā†”Aā‹…š‘š‘øB~š‘ø/š‘øā”Aā‹…š‘š‘øB
15 8 14 mpbid āŠ¢Aāˆˆš‘µĆ—š‘µāˆ§Bāˆˆš‘µĆ—š‘µā†’Aā‹…š‘š‘øB~š‘ø/š‘øā”Aā‹…š‘š‘øB
16 nqerrel āŠ¢Bāˆˆš‘µĆ—š‘µā†’B~š‘ø/š‘øā”B
17 16 adantl āŠ¢Aāˆˆš‘µĆ—š‘µāˆ§Bāˆˆš‘µĆ—š‘µā†’B~š‘ø/š‘øā”B
18 elpqn āŠ¢/š‘øā”Bāˆˆš‘øā†’/š‘øā”Bāˆˆš‘µĆ—š‘µ
19 2 18 syl āŠ¢Bāˆˆš‘µĆ—š‘µā†’/š‘øā”Bāˆˆš‘µĆ—š‘µ
20 mulerpqlem āŠ¢Bāˆˆš‘µĆ—š‘µāˆ§/š‘øā”Bāˆˆš‘µĆ—š‘µāˆ§/š‘øā”Aāˆˆš‘µĆ—š‘µā†’B~š‘ø/š‘øā”Bā†”Bā‹…š‘š‘ø/š‘øā”A~š‘ø/š‘øā”Bā‹…š‘š‘ø/š‘øā”A
21 20 3exp āŠ¢Bāˆˆš‘µĆ—š‘µā†’/š‘øā”Bāˆˆš‘µĆ—š‘µā†’/š‘øā”Aāˆˆš‘µĆ—š‘µā†’B~š‘ø/š‘øā”Bā†”Bā‹…š‘š‘ø/š‘øā”A~š‘ø/š‘øā”Bā‹…š‘š‘ø/š‘øā”A
22 19 21 mpd āŠ¢Bāˆˆš‘µĆ—š‘µā†’/š‘øā”Aāˆˆš‘µĆ—š‘µā†’B~š‘ø/š‘øā”Bā†”Bā‹…š‘š‘ø/š‘øā”A~š‘ø/š‘øā”Bā‹…š‘š‘ø/š‘øā”A
23 10 22 mpan9 āŠ¢Aāˆˆš‘µĆ—š‘µāˆ§Bāˆˆš‘µĆ—š‘µā†’B~š‘ø/š‘øā”Bā†”Bā‹…š‘š‘ø/š‘øā”A~š‘ø/š‘øā”Bā‹…š‘š‘ø/š‘øā”A
24 17 23 mpbid āŠ¢Aāˆˆš‘µĆ—š‘µāˆ§Bāˆˆš‘µĆ—š‘µā†’Bā‹…š‘š‘ø/š‘øā”A~š‘ø/š‘øā”Bā‹…š‘š‘ø/š‘øā”A
25 mulcompq āŠ¢Bā‹…š‘š‘ø/š‘øā”A=/š‘øā”Aā‹…š‘š‘øB
26 mulcompq āŠ¢/š‘øā”Bā‹…š‘š‘ø/š‘øā”A=/š‘øā”Aā‹…š‘š‘ø/š‘øā”B
27 24 25 26 3brtr3g āŠ¢Aāˆˆš‘µĆ—š‘µāˆ§Bāˆˆš‘µĆ—š‘µā†’/š‘øā”Aā‹…š‘š‘øB~š‘ø/š‘øā”Aā‹…š‘š‘ø/š‘øā”B
28 6 15 27 ertrd āŠ¢Aāˆˆš‘µĆ—š‘µāˆ§Bāˆˆš‘µĆ—š‘µā†’Aā‹…š‘š‘øB~š‘ø/š‘øā”Aā‹…š‘š‘ø/š‘øā”B
29 mulpqf āŠ¢ā‹…š‘š‘ø:š‘µĆ—š‘µĆ—š‘µĆ—š‘µāŸ¶š‘µĆ—š‘µ
30 29 fovcl āŠ¢Aāˆˆš‘µĆ—š‘µāˆ§Bāˆˆš‘µĆ—š‘µā†’Aā‹…š‘š‘øBāˆˆš‘µĆ—š‘µ
31 29 fovcl āŠ¢/š‘øā”Aāˆˆš‘µĆ—š‘µāˆ§/š‘øā”Bāˆˆš‘µĆ—š‘µā†’/š‘øā”Aā‹…š‘š‘ø/š‘øā”Bāˆˆš‘µĆ—š‘µ
32 10 19 31 syl2an āŠ¢Aāˆˆš‘µĆ—š‘µāˆ§Bāˆˆš‘µĆ—š‘µā†’/š‘øā”Aā‹…š‘š‘ø/š‘øā”Bāˆˆš‘µĆ—š‘µ
33 nqereq āŠ¢Aā‹…š‘š‘øBāˆˆš‘µĆ—š‘µāˆ§/š‘øā”Aā‹…š‘š‘ø/š‘øā”Bāˆˆš‘µĆ—š‘µā†’Aā‹…š‘š‘øB~š‘ø/š‘øā”Aā‹…š‘š‘ø/š‘øā”Bā†”/š‘øā”Aā‹…š‘š‘øB=/š‘øā”/š‘øā”Aā‹…š‘š‘ø/š‘øā”B
34 30 32 33 syl2anc āŠ¢Aāˆˆš‘µĆ—š‘µāˆ§Bāˆˆš‘µĆ—š‘µā†’Aā‹…š‘š‘øB~š‘ø/š‘øā”Aā‹…š‘š‘ø/š‘øā”Bā†”/š‘øā”Aā‹…š‘š‘øB=/š‘øā”/š‘øā”Aā‹…š‘š‘ø/š‘øā”B
35 28 34 mpbid āŠ¢Aāˆˆš‘µĆ—š‘µāˆ§Bāˆˆš‘µĆ—š‘µā†’/š‘øā”Aā‹…š‘š‘øB=/š‘øā”/š‘øā”Aā‹…š‘š‘ø/š‘øā”B
36 4 35 eqtr4d āŠ¢Aāˆˆš‘µĆ—š‘µāˆ§Bāˆˆš‘µĆ—š‘µā†’/š‘øā”Aā‹…š‘ø/š‘øā”B=/š‘øā”Aā‹…š‘š‘øB
37 0nnq āŠ¢Ā¬āˆ…āˆˆš‘ø
38 nqerf āŠ¢/š‘ø:š‘µĆ—š‘µāŸ¶š‘ø
39 38 fdmi āŠ¢domā”/š‘ø=š‘µĆ—š‘µ
40 39 eleq2i āŠ¢Aāˆˆdomā”/š‘øā†”Aāˆˆš‘µĆ—š‘µ
41 ndmfv āŠ¢Ā¬Aāˆˆdomā”/š‘øā†’/š‘øā”A=āˆ…
42 40 41 sylnbir āŠ¢Ā¬Aāˆˆš‘µĆ—š‘µā†’/š‘øā”A=āˆ…
43 42 eleq1d āŠ¢Ā¬Aāˆˆš‘µĆ—š‘µā†’/š‘øā”Aāˆˆš‘øā†”āˆ…āˆˆš‘ø
44 37 43 mtbiri āŠ¢Ā¬Aāˆˆš‘µĆ—š‘µā†’Ā¬/š‘øā”Aāˆˆš‘ø
45 44 con4i āŠ¢/š‘øā”Aāˆˆš‘øā†’Aāˆˆš‘µĆ—š‘µ
46 39 eleq2i āŠ¢Bāˆˆdomā”/š‘øā†”Bāˆˆš‘µĆ—š‘µ
47 ndmfv āŠ¢Ā¬Bāˆˆdomā”/š‘øā†’/š‘øā”B=āˆ…
48 46 47 sylnbir āŠ¢Ā¬Bāˆˆš‘µĆ—š‘µā†’/š‘øā”B=āˆ…
49 48 eleq1d āŠ¢Ā¬Bāˆˆš‘µĆ—š‘µā†’/š‘øā”Bāˆˆš‘øā†”āˆ…āˆˆš‘ø
50 37 49 mtbiri āŠ¢Ā¬Bāˆˆš‘µĆ—š‘µā†’Ā¬/š‘øā”Bāˆˆš‘ø
51 50 con4i āŠ¢/š‘øā”Bāˆˆš‘øā†’Bāˆˆš‘µĆ—š‘µ
52 45 51 anim12i āŠ¢/š‘øā”Aāˆˆš‘øāˆ§/š‘øā”Bāˆˆš‘øā†’Aāˆˆš‘µĆ—š‘µāˆ§Bāˆˆš‘µĆ—š‘µ
53 mulnqf āŠ¢ā‹…š‘ø:š‘øƗš‘øāŸ¶š‘ø
54 53 fdmi āŠ¢domā”ā‹…š‘ø=š‘øƗš‘ø
55 54 ndmov āŠ¢Ā¬/š‘øā”Aāˆˆš‘øāˆ§/š‘øā”Bāˆˆš‘øā†’/š‘øā”Aā‹…š‘ø/š‘øā”B=āˆ…
56 52 55 nsyl5 āŠ¢Ā¬Aāˆˆš‘µĆ—š‘µāˆ§Bāˆˆš‘µĆ—š‘µā†’/š‘øā”Aā‹…š‘ø/š‘øā”B=āˆ…
57 0nelxp āŠ¢Ā¬āˆ…āˆˆš‘µĆ—š‘µ
58 39 eleq2i āŠ¢āˆ…āˆˆdomā”/š‘øā†”āˆ…āˆˆš‘µĆ—š‘µ
59 57 58 mtbir āŠ¢Ā¬āˆ…āˆˆdomā”/š‘ø
60 29 fdmi āŠ¢domā”ā‹…š‘š‘ø=š‘µĆ—š‘µĆ—š‘µĆ—š‘µ
61 60 ndmov āŠ¢Ā¬Aāˆˆš‘µĆ—š‘µāˆ§Bāˆˆš‘µĆ—š‘µā†’Aā‹…š‘š‘øB=āˆ…
62 61 eleq1d āŠ¢Ā¬Aāˆˆš‘µĆ—š‘µāˆ§Bāˆˆš‘µĆ—š‘µā†’Aā‹…š‘š‘øBāˆˆdomā”/š‘øā†”āˆ…āˆˆdomā”/š‘ø
63 59 62 mtbiri āŠ¢Ā¬Aāˆˆš‘µĆ—š‘µāˆ§Bāˆˆš‘µĆ—š‘µā†’Ā¬Aā‹…š‘š‘øBāˆˆdomā”/š‘ø
64 ndmfv āŠ¢Ā¬Aā‹…š‘š‘øBāˆˆdomā”/š‘øā†’/š‘øā”Aā‹…š‘š‘øB=āˆ…
65 63 64 syl āŠ¢Ā¬Aāˆˆš‘µĆ—š‘µāˆ§Bāˆˆš‘µĆ—š‘µā†’/š‘øā”Aā‹…š‘š‘øB=āˆ…
66 56 65 eqtr4d āŠ¢Ā¬Aāˆˆš‘µĆ—š‘µāˆ§Bāˆˆš‘µĆ—š‘µā†’/š‘øā”Aā‹…š‘ø/š‘øā”B=/š‘øā”Aā‹…š‘š‘øB
67 36 66 pm2.61i āŠ¢/š‘øā”Aā‹…š‘ø/š‘øā”B=/š‘øā”Aā‹…š‘š‘øB