Metamath Proof Explorer


Theorem mulsubdivbinom2

Description: The square of a binomial with factor minus a number divided by a nonzero number. (Contributed by AV, 19-Jul-2021)

Ref Expression
Assertion mulsubdivbinom2 ABDCC0CA+B2DC=CA2+2AB+B2DC

Proof

Step Hyp Ref Expression
1 simp1 ABDA
2 1 adantr ABDCC0A
3 simpl2 ABDCC0B
4 simpl CC0C
5 4 adantl ABDCC0C
6 mulbinom2 ABCCA+B2=CA2+2CAB+B2
7 6 oveq1d ABCCA+B2D=CA2+2CAB+B2-D
8 7 oveq1d ABCCA+B2DC=CA2+2CAB+B2-DC
9 2 3 5 8 syl3anc ABDCC0CA+B2DC=CA2+2CAB+B2-DC
10 5 2 mulcld ABDCC0CA
11 10 sqcld ABDCC0CA2
12 2cnd C2
13 id CC
14 12 13 mulcld C2C
15 14 adantr CC02C
16 15 adantl ABDCC02C
17 mulcl ABAB
18 17 3adant3 ABDAB
19 18 adantr ABDCC0AB
20 16 19 mulcld ABDCC02CAB
21 11 20 addcld ABDCC0CA2+2CAB
22 sqcl BB2
23 22 3ad2ant2 ABDB2
24 23 adantr ABDCC0B2
25 21 24 addcld ABDCC0CA2+2CAB+B2
26 simpl3 ABDCC0D
27 simpr ABDCC0CC0
28 divsubdir CA2+2CAB+B2DCC0CA2+2CAB+B2-DC=CA2+2CAB+B2CDC
29 25 26 27 28 syl3anc ABDCC0CA2+2CAB+B2-DC=CA2+2CAB+B2CDC
30 divdir CA2+2CABB2CC0CA2+2CAB+B2C=CA2+2CABC+B2C
31 21 24 27 30 syl3anc ABDCC0CA2+2CAB+B2C=CA2+2CABC+B2C
32 divdir CA22CABCC0CA2+2CABC=CA2C+2CABC
33 11 20 27 32 syl3anc ABDCC0CA2+2CABC=CA2C+2CABC
34 sqmul CACA2=C2A2
35 4 1 34 syl2anr ABDCC0CA2=C2A2
36 35 oveq1d ABDCC0CA2C=C2A2C
37 sqcl CC2
38 37 adantr CC0C2
39 38 adantl ABDCC0C2
40 sqcl AA2
41 40 3ad2ant1 ABDA2
42 41 adantr ABDCC0A2
43 div23 C2A2CC0C2A2C=C2CA2
44 39 42 27 43 syl3anc ABDCC0C2A2C=C2CA2
45 sqdivid CC0C2C=C
46 45 adantl ABDCC0C2C=C
47 46 oveq1d ABDCC0C2CA2=CA2
48 36 44 47 3eqtrd ABDCC0CA2C=CA2
49 div23 2CABCC02CABC=2CCAB
50 16 19 27 49 syl3anc ABDCC02CABC=2CCAB
51 2cnd CC02
52 simpr CC0C0
53 51 4 52 divcan4d CC02CC=2
54 53 adantl ABDCC02CC=2
55 54 oveq1d ABDCC02CCAB=2AB
56 50 55 eqtrd ABDCC02CABC=2AB
57 48 56 oveq12d ABDCC0CA2C+2CABC=CA2+2AB
58 33 57 eqtrd ABDCC0CA2+2CABC=CA2+2AB
59 58 oveq1d ABDCC0CA2+2CABC+B2C=CA2+2AB+B2C
60 31 59 eqtrd ABDCC0CA2+2CAB+B2C=CA2+2AB+B2C
61 60 oveq1d ABDCC0CA2+2CAB+B2CDC=CA2+2AB+B2C-DC
62 5 42 mulcld ABDCC0CA2
63 2cnd AB2
64 63 17 mulcld AB2AB
65 64 3adant3 ABD2AB
66 65 adantr ABDCC02AB
67 62 66 addcld ABDCC0CA2+2AB
68 52 adantl ABDCC0C0
69 24 5 68 divcld ABDCC0B2C
70 26 5 68 divcld ABDCC0DC
71 67 69 70 addsubassd ABDCC0CA2+2AB+B2C-DC=CA2+2AB+B2CDC
72 29 61 71 3eqtrd ABDCC0CA2+2CAB+B2-DC=CA2+2AB+B2CDC
73 divsubdir B2DCC0B2DC=B2CDC
74 24 26 27 73 syl3anc ABDCC0B2DC=B2CDC
75 74 eqcomd ABDCC0B2CDC=B2DC
76 75 oveq2d ABDCC0CA2+2AB+B2CDC=CA2+2AB+B2DC
77 9 72 76 3eqtrd ABDCC0CA+B2DC=CA2+2AB+B2DC