| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 |  | 
						
							| 2 | 1 | adantr |  | 
						
							| 3 |  | simpl2 |  | 
						
							| 4 |  | simpl |  | 
						
							| 5 | 4 | adantl |  | 
						
							| 6 |  | mulbinom2 |  | 
						
							| 7 | 6 | oveq1d |  | 
						
							| 8 | 7 | oveq1d |  | 
						
							| 9 | 2 3 5 8 | syl3anc |  | 
						
							| 10 | 5 2 | mulcld |  | 
						
							| 11 | 10 | sqcld |  | 
						
							| 12 |  | 2cnd |  | 
						
							| 13 |  | id |  | 
						
							| 14 | 12 13 | mulcld |  | 
						
							| 15 | 14 | adantr |  | 
						
							| 16 | 15 | adantl |  | 
						
							| 17 |  | mulcl |  | 
						
							| 18 | 17 | 3adant3 |  | 
						
							| 19 | 18 | adantr |  | 
						
							| 20 | 16 19 | mulcld |  | 
						
							| 21 | 11 20 | addcld |  | 
						
							| 22 |  | sqcl |  | 
						
							| 23 | 22 | 3ad2ant2 |  | 
						
							| 24 | 23 | adantr |  | 
						
							| 25 | 21 24 | addcld |  | 
						
							| 26 |  | simpl3 |  | 
						
							| 27 |  | simpr |  | 
						
							| 28 |  | divsubdir |  | 
						
							| 29 | 25 26 27 28 | syl3anc |  | 
						
							| 30 |  | divdir |  | 
						
							| 31 | 21 24 27 30 | syl3anc |  | 
						
							| 32 |  | divdir |  | 
						
							| 33 | 11 20 27 32 | syl3anc |  | 
						
							| 34 |  | sqmul |  | 
						
							| 35 | 4 1 34 | syl2anr |  | 
						
							| 36 | 35 | oveq1d |  | 
						
							| 37 |  | sqcl |  | 
						
							| 38 | 37 | adantr |  | 
						
							| 39 | 38 | adantl |  | 
						
							| 40 |  | sqcl |  | 
						
							| 41 | 40 | 3ad2ant1 |  | 
						
							| 42 | 41 | adantr |  | 
						
							| 43 |  | div23 |  | 
						
							| 44 | 39 42 27 43 | syl3anc |  | 
						
							| 45 |  | sqdivid |  | 
						
							| 46 | 45 | adantl |  | 
						
							| 47 | 46 | oveq1d |  | 
						
							| 48 | 36 44 47 | 3eqtrd |  | 
						
							| 49 |  | div23 |  | 
						
							| 50 | 16 19 27 49 | syl3anc |  | 
						
							| 51 |  | 2cnd |  | 
						
							| 52 |  | simpr |  | 
						
							| 53 | 51 4 52 | divcan4d |  | 
						
							| 54 | 53 | adantl |  | 
						
							| 55 | 54 | oveq1d |  | 
						
							| 56 | 50 55 | eqtrd |  | 
						
							| 57 | 48 56 | oveq12d |  | 
						
							| 58 | 33 57 | eqtrd |  | 
						
							| 59 | 58 | oveq1d |  | 
						
							| 60 | 31 59 | eqtrd |  | 
						
							| 61 | 60 | oveq1d |  | 
						
							| 62 | 5 42 | mulcld |  | 
						
							| 63 |  | 2cnd |  | 
						
							| 64 | 63 17 | mulcld |  | 
						
							| 65 | 64 | 3adant3 |  | 
						
							| 66 | 65 | adantr |  | 
						
							| 67 | 62 66 | addcld |  | 
						
							| 68 | 52 | adantl |  | 
						
							| 69 | 24 5 68 | divcld |  | 
						
							| 70 | 26 5 68 | divcld |  | 
						
							| 71 | 67 69 70 | addsubassd |  | 
						
							| 72 | 29 61 71 | 3eqtrd |  | 
						
							| 73 |  | divsubdir |  | 
						
							| 74 | 24 26 27 73 | syl3anc |  | 
						
							| 75 | 74 | eqcomd |  | 
						
							| 76 | 75 | oveq2d |  | 
						
							| 77 | 9 72 76 | 3eqtrd |  |