| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq2 |  | 
						
							| 2 |  | oveq1 |  | 
						
							| 3 | 2 | eleq1d |  | 
						
							| 4 | 1 3 | imbi12d |  | 
						
							| 5 | 4 | ralbidv |  | 
						
							| 6 |  | breq2 |  | 
						
							| 7 |  | oveq1 |  | 
						
							| 8 | 7 | eleq1d |  | 
						
							| 9 | 6 8 | imbi12d |  | 
						
							| 10 | 9 | ralbidv |  | 
						
							| 11 |  | breq2 |  | 
						
							| 12 |  | oveq1 |  | 
						
							| 13 | 12 | eleq1d |  | 
						
							| 14 | 11 13 | imbi12d |  | 
						
							| 15 | 14 | ralbidv |  | 
						
							| 16 |  | breq2 |  | 
						
							| 17 |  | oveq1 |  | 
						
							| 18 | 17 | eleq1d |  | 
						
							| 19 | 16 18 | imbi12d |  | 
						
							| 20 | 19 | ralbidv |  | 
						
							| 21 |  | n0sge0 |  | 
						
							| 22 | 21 | biantrud |  | 
						
							| 23 |  | n0sno |  | 
						
							| 24 |  | 0sno |  | 
						
							| 25 |  | sletri3 |  | 
						
							| 26 | 23 24 25 | sylancl |  | 
						
							| 27 | 22 26 | bitr4d |  | 
						
							| 28 |  | oveq2 |  | 
						
							| 29 |  | subsid |  | 
						
							| 30 | 24 29 | ax-mp |  | 
						
							| 31 |  | 0n0s |  | 
						
							| 32 | 30 31 | eqeltri |  | 
						
							| 33 | 28 32 | eqeltrdi |  | 
						
							| 34 | 27 33 | biimtrdi |  | 
						
							| 35 | 34 | rgen |  | 
						
							| 36 |  | breq1 |  | 
						
							| 37 |  | oveq2 |  | 
						
							| 38 | 37 | eleq1d |  | 
						
							| 39 | 36 38 | imbi12d |  | 
						
							| 40 | 39 | cbvralvw |  | 
						
							| 41 |  | n0sno |  | 
						
							| 42 |  | peano2no |  | 
						
							| 43 |  | subsid1 |  | 
						
							| 44 | 41 42 43 | 3syl |  | 
						
							| 45 |  | peano2n0s |  | 
						
							| 46 | 44 45 | eqeltrd |  | 
						
							| 47 |  | oveq2 |  | 
						
							| 48 | 47 | eleq1d |  | 
						
							| 49 | 46 48 | syl5ibrcom |  | 
						
							| 50 | 49 | 2a1dd |  | 
						
							| 51 | 50 | adantr |  | 
						
							| 52 |  | breq1 |  | 
						
							| 53 |  | oveq2 |  | 
						
							| 54 | 53 | eleq1d |  | 
						
							| 55 | 52 54 | imbi12d |  | 
						
							| 56 | 55 | rspcv |  | 
						
							| 57 | 23 | adantl |  | 
						
							| 58 |  | 1sno |  | 
						
							| 59 | 58 | a1i |  | 
						
							| 60 | 41 | adantr |  | 
						
							| 61 | 57 59 60 | slesubaddd |  | 
						
							| 62 | 60 57 59 | subsubs2d |  | 
						
							| 63 | 60 59 57 | addsubsassd |  | 
						
							| 64 | 62 63 | eqtr4d |  | 
						
							| 65 | 64 | eleq1d |  | 
						
							| 66 | 61 65 | imbi12d |  | 
						
							| 67 | 66 | biimpd |  | 
						
							| 68 | 56 67 | syl9r |  | 
						
							| 69 |  | n0s0m1 |  | 
						
							| 70 | 69 | adantl |  | 
						
							| 71 | 51 68 70 | mpjaod |  | 
						
							| 72 | 71 | ralrimdva |  | 
						
							| 73 | 40 72 | biimtrid |  | 
						
							| 74 | 5 10 15 20 35 73 | n0sind |  | 
						
							| 75 |  | breq1 |  | 
						
							| 76 |  | oveq2 |  | 
						
							| 77 | 76 | eleq1d |  | 
						
							| 78 | 75 77 | imbi12d |  | 
						
							| 79 | 78 | rspcva |  | 
						
							| 80 | 74 79 | sylan2 |  | 
						
							| 81 |  | n0sge0 |  | 
						
							| 82 |  | n0sno |  | 
						
							| 83 | 82 | adantl |  | 
						
							| 84 |  | n0sno |  | 
						
							| 85 | 84 | adantr |  | 
						
							| 86 | 83 85 | subsge0d |  | 
						
							| 87 | 81 86 | imbitrid |  | 
						
							| 88 | 80 87 | impbid |  |