Description: If a graph has two vertices, and there is an edge between the vertices, then each vertex is the neighbor of the other vertex. (Contributed by AV, 2-Nov-2020) (Revised by AV, 25-Mar-2021) (Proof shortened by AV, 13-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nbgr2vtx1edg.v | |
|
nbgr2vtx1edg.e | |
||
Assertion | nbgr2vtx1edg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbgr2vtx1edg.v | |
|
2 | nbgr2vtx1edg.e | |
|
3 | 1 | fvexi | |
4 | hash2prb | |
|
5 | 3 4 | ax-mp | |
6 | simpll | |
|
7 | 6 | ancomd | |
8 | simpl | |
|
9 | 8 | necomd | |
10 | 9 | ad2antlr | |
11 | id | |
|
12 | sseq2 | |
|
13 | 12 | adantl | |
14 | ssidd | |
|
15 | 11 13 14 | rspcedvd | |
16 | 15 | adantl | |
17 | 1 2 | nbgrel | |
18 | 7 10 16 17 | syl3anbrc | |
19 | 8 | ad2antlr | |
20 | sseq2 | |
|
21 | 20 | adantl | |
22 | prcom | |
|
23 | 22 | eqimssi | |
24 | 23 | a1i | |
25 | 11 21 24 | rspcedvd | |
26 | 25 | adantl | |
27 | 1 2 | nbgrel | |
28 | 6 19 26 27 | syl3anbrc | |
29 | difprsn1 | |
|
30 | 29 | raleqdv | |
31 | vex | |
|
32 | eleq1 | |
|
33 | 31 32 | ralsn | |
34 | 30 33 | bitrdi | |
35 | difprsn2 | |
|
36 | 35 | raleqdv | |
37 | vex | |
|
38 | eleq1 | |
|
39 | 37 38 | ralsn | |
40 | 36 39 | bitrdi | |
41 | 34 40 | anbi12d | |
42 | 41 | adantr | |
43 | 42 | ad2antlr | |
44 | 18 28 43 | mpbir2and | |
45 | 44 | ex | |
46 | eleq1 | |
|
47 | id | |
|
48 | difeq1 | |
|
49 | 48 | raleqdv | |
50 | 47 49 | raleqbidv | |
51 | sneq | |
|
52 | 51 | difeq2d | |
53 | oveq2 | |
|
54 | 53 | eleq2d | |
55 | 52 54 | raleqbidv | |
56 | sneq | |
|
57 | 56 | difeq2d | |
58 | oveq2 | |
|
59 | 58 | eleq2d | |
60 | 57 59 | raleqbidv | |
61 | 37 31 55 60 | ralpr | |
62 | 50 61 | bitrdi | |
63 | 46 62 | imbi12d | |
64 | 63 | adantl | |
65 | 64 | adantl | |
66 | 45 65 | mpbird | |
67 | 66 | ex | |
68 | 67 | rexlimivv | |
69 | 5 68 | sylbi | |
70 | 69 | imp | |