Metamath Proof Explorer


Theorem nbgr2vtx1edg

Description: If a graph has two vertices, and there is an edge between the vertices, then each vertex is the neighbor of the other vertex. (Contributed by AV, 2-Nov-2020) (Revised by AV, 25-Mar-2021) (Proof shortened by AV, 13-Feb-2022)

Ref Expression
Hypotheses nbgr2vtx1edg.v V=VtxG
nbgr2vtx1edg.e E=EdgG
Assertion nbgr2vtx1edg V=2VEvVnVvnGNeighbVtxv

Proof

Step Hyp Ref Expression
1 nbgr2vtx1edg.v V=VtxG
2 nbgr2vtx1edg.e E=EdgG
3 1 fvexi VV
4 hash2prb VVV=2aVbVabV=ab
5 3 4 ax-mp V=2aVbVabV=ab
6 simpll aVbVabV=ababEaVbV
7 6 ancomd aVbVabV=ababEbVaV
8 simpl abV=abab
9 8 necomd abV=abba
10 9 ad2antlr aVbVabV=ababEba
11 id abEabE
12 sseq2 e=ababeabab
13 12 adantl abEe=ababeabab
14 ssidd abEabab
15 11 13 14 rspcedvd abEeEabe
16 15 adantl aVbVabV=ababEeEabe
17 1 2 nbgrel bGNeighbVtxabVaVbaeEabe
18 7 10 16 17 syl3anbrc aVbVabV=ababEbGNeighbVtxa
19 8 ad2antlr aVbVabV=ababEab
20 sseq2 e=abbaebaab
21 20 adantl abEe=abbaebaab
22 prcom ba=ab
23 22 eqimssi baab
24 23 a1i abEbaab
25 11 21 24 rspcedvd abEeEbae
26 25 adantl aVbVabV=ababEeEbae
27 1 2 nbgrel aGNeighbVtxbaVbVabeEbae
28 6 19 26 27 syl3anbrc aVbVabV=ababEaGNeighbVtxb
29 difprsn1 ababa=b
30 29 raleqdv abnabanGNeighbVtxanbnGNeighbVtxa
31 vex bV
32 eleq1 n=bnGNeighbVtxabGNeighbVtxa
33 31 32 ralsn nbnGNeighbVtxabGNeighbVtxa
34 30 33 bitrdi abnabanGNeighbVtxabGNeighbVtxa
35 difprsn2 ababb=a
36 35 raleqdv abnabbnGNeighbVtxbnanGNeighbVtxb
37 vex aV
38 eleq1 n=anGNeighbVtxbaGNeighbVtxb
39 37 38 ralsn nanGNeighbVtxbaGNeighbVtxb
40 36 39 bitrdi abnabbnGNeighbVtxbaGNeighbVtxb
41 34 40 anbi12d abnabanGNeighbVtxanabbnGNeighbVtxbbGNeighbVtxaaGNeighbVtxb
42 41 adantr abV=abnabanGNeighbVtxanabbnGNeighbVtxbbGNeighbVtxaaGNeighbVtxb
43 42 ad2antlr aVbVabV=ababEnabanGNeighbVtxanabbnGNeighbVtxbbGNeighbVtxaaGNeighbVtxb
44 18 28 43 mpbir2and aVbVabV=ababEnabanGNeighbVtxanabbnGNeighbVtxb
45 44 ex aVbVabV=ababEnabanGNeighbVtxanabbnGNeighbVtxb
46 eleq1 V=abVEabE
47 id V=abV=ab
48 difeq1 V=abVv=abv
49 48 raleqdv V=abnVvnGNeighbVtxvnabvnGNeighbVtxv
50 47 49 raleqbidv V=abvVnVvnGNeighbVtxvvabnabvnGNeighbVtxv
51 sneq v=av=a
52 51 difeq2d v=aabv=aba
53 oveq2 v=aGNeighbVtxv=GNeighbVtxa
54 53 eleq2d v=anGNeighbVtxvnGNeighbVtxa
55 52 54 raleqbidv v=anabvnGNeighbVtxvnabanGNeighbVtxa
56 sneq v=bv=b
57 56 difeq2d v=babv=abb
58 oveq2 v=bGNeighbVtxv=GNeighbVtxb
59 58 eleq2d v=bnGNeighbVtxvnGNeighbVtxb
60 57 59 raleqbidv v=bnabvnGNeighbVtxvnabbnGNeighbVtxb
61 37 31 55 60 ralpr vabnabvnGNeighbVtxvnabanGNeighbVtxanabbnGNeighbVtxb
62 50 61 bitrdi V=abvVnVvnGNeighbVtxvnabanGNeighbVtxanabbnGNeighbVtxb
63 46 62 imbi12d V=abVEvVnVvnGNeighbVtxvabEnabanGNeighbVtxanabbnGNeighbVtxb
64 63 adantl abV=abVEvVnVvnGNeighbVtxvabEnabanGNeighbVtxanabbnGNeighbVtxb
65 64 adantl aVbVabV=abVEvVnVvnGNeighbVtxvabEnabanGNeighbVtxanabbnGNeighbVtxb
66 45 65 mpbird aVbVabV=abVEvVnVvnGNeighbVtxv
67 66 ex aVbVabV=abVEvVnVvnGNeighbVtxv
68 67 rexlimivv aVbVabV=abVEvVnVvnGNeighbVtxv
69 5 68 sylbi V=2VEvVnVvnGNeighbVtxv
70 69 imp V=2VEvVnVvnGNeighbVtxv