Description: A neighborhood of a set is a neighborhood of every point in the set. Proposition 1 of BourbakiTop1 p. I.2. (Contributed by FL, 16-Nov-2006)
Ref | Expression | ||
---|---|---|---|
Hypothesis | neips.1 | |
|
Assertion | neips | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neips.1 | |
|
2 | snssi | |
|
3 | neiss | |
|
4 | 2 3 | syl3an3 | |
5 | 4 | 3exp | |
6 | 5 | ralrimdv | |
7 | 6 | 3ad2ant1 | |
8 | r19.28zv | |
|
9 | 8 | 3ad2ant3 | |
10 | ssrab2 | |
|
11 | uniopn | |
|
12 | 10 11 | mpan2 | |
13 | 12 | ad2antrr | |
14 | sseq1 | |
|
15 | 14 | elrab | |
16 | elunii | |
|
17 | 15 16 | sylan2br | |
18 | 17 | an12s | |
19 | 18 | rexlimiva | |
20 | 19 | ralimi | |
21 | dfss3 | |
|
22 | 20 21 | sylibr | |
23 | 22 | adantl | |
24 | unissb | |
|
25 | sseq1 | |
|
26 | 25 | elrab | |
27 | 26 | simprbi | |
28 | 24 27 | mprgbir | |
29 | 23 28 | jctir | |
30 | sseq2 | |
|
31 | sseq1 | |
|
32 | 30 31 | anbi12d | |
33 | 32 | rspcev | |
34 | 13 29 33 | syl2anc | |
35 | 34 | ex | |
36 | 35 | anim2d | |
37 | 36 | 3adant3 | |
38 | 9 37 | sylbid | |
39 | ssel2 | |
|
40 | 1 | isneip | |
41 | 39 40 | sylan2 | |
42 | 41 | anassrs | |
43 | 42 | ralbidva | |
44 | 43 | 3adant3 | |
45 | 1 | isnei | |
46 | 45 | 3adant3 | |
47 | 38 44 46 | 3imtr4d | |
48 | 7 47 | impbid | |