Metamath Proof Explorer


Theorem neips

Description: A neighborhood of a set is a neighborhood of every point in the set. Proposition 1 of BourbakiTop1 p. I.2. (Contributed by FL, 16-Nov-2006)

Ref Expression
Hypothesis neips.1 X=J
Assertion neips JTopSXSNneiJSpSNneiJp

Proof

Step Hyp Ref Expression
1 neips.1 X=J
2 snssi pSpS
3 neiss JTopNneiJSpSNneiJp
4 2 3 syl3an3 JTopNneiJSpSNneiJp
5 4 3exp JTopNneiJSpSNneiJp
6 5 ralrimdv JTopNneiJSpSNneiJp
7 6 3ad2ant1 JTopSXSNneiJSpSNneiJp
8 r19.28zv SpSNXgJpggNNXpSgJpggN
9 8 3ad2ant3 JTopSXSpSNXgJpggNNXpSgJpggN
10 ssrab2 vJ|vNJ
11 uniopn JTopvJ|vNJvJ|vNJ
12 10 11 mpan2 JTopvJ|vNJ
13 12 ad2antrr JTopSXpSgJpggNvJ|vNJ
14 sseq1 v=gvNgN
15 14 elrab gvJ|vNgJgN
16 elunii pggvJ|vNpvJ|vN
17 15 16 sylan2br pggJgNpvJ|vN
18 17 an12s gJpggNpvJ|vN
19 18 rexlimiva gJpggNpvJ|vN
20 19 ralimi pSgJpggNpSpvJ|vN
21 dfss3 SvJ|vNpSpvJ|vN
22 20 21 sylibr pSgJpggNSvJ|vN
23 22 adantl JTopSXpSgJpggNSvJ|vN
24 unissb vJ|vNNhvJ|vNhN
25 sseq1 v=hvNhN
26 25 elrab hvJ|vNhJhN
27 26 simprbi hvJ|vNhN
28 24 27 mprgbir vJ|vNN
29 23 28 jctir JTopSXpSgJpggNSvJ|vNvJ|vNN
30 sseq2 h=vJ|vNShSvJ|vN
31 sseq1 h=vJ|vNhNvJ|vNN
32 30 31 anbi12d h=vJ|vNShhNSvJ|vNvJ|vNN
33 32 rspcev vJ|vNJSvJ|vNvJ|vNNhJShhN
34 13 29 33 syl2anc JTopSXpSgJpggNhJShhN
35 34 ex JTopSXpSgJpggNhJShhN
36 35 anim2d JTopSXNXpSgJpggNNXhJShhN
37 36 3adant3 JTopSXSNXpSgJpggNNXhJShhN
38 9 37 sylbid JTopSXSpSNXgJpggNNXhJShhN
39 ssel2 SXpSpX
40 1 isneip JToppXNneiJpNXgJpggN
41 39 40 sylan2 JTopSXpSNneiJpNXgJpggN
42 41 anassrs JTopSXpSNneiJpNXgJpggN
43 42 ralbidva JTopSXpSNneiJppSNXgJpggN
44 43 3adant3 JTopSXSpSNneiJppSNXgJpggN
45 1 isnei JTopSXNneiJSNXhJShhN
46 45 3adant3 JTopSXSNneiJSNXhJShhN
47 38 44 46 3imtr4d JTopSXSpSNneiJpNneiJS
48 7 47 impbid JTopSXSNneiJSpSNneiJp