Description: For every point p of a subset A of X with no limit points, there exists an open set n that intersects A only at p . (Contributed by ML, 23-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | nlpineqsn.x | |
|
Assertion | nlpineqsn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nlpineqsn.x | |
|
2 | simp1 | |
|
3 | simp2 | |
|
4 | ssel2 | |
|
5 | 4 | 3adant1 | |
6 | 2 3 5 | 3jca | |
7 | noel | |
|
8 | eleq2 | |
|
9 | 7 8 | mtbiri | |
10 | 9 | adantl | |
11 | 1 | islp3 | |
12 | 11 | adantr | |
13 | 10 12 | mtbid | |
14 | nne | |
|
15 | 14 | anbi2i | |
16 | annim | |
|
17 | 15 16 | bitr3i | |
18 | 17 | rexbii | |
19 | rexnal | |
|
20 | 18 19 | bitri | |
21 | 13 20 | sylibr | |
22 | 6 21 | sylan | |
23 | indif2 | |
|
24 | 23 | eqeq1i | |
25 | ssdif0 | |
|
26 | 24 25 | bitr4i | |
27 | elin | |
|
28 | sssn | |
|
29 | n0i | |
|
30 | biorf | |
|
31 | 29 30 | syl | |
32 | 28 31 | bitr4id | |
33 | 27 32 | sylbir | |
34 | 26 33 | bitrid | |
35 | 34 | ancoms | |
36 | 35 | pm5.32da | |
37 | 36 | rexbidv | |
38 | 37 | 3ad2ant3 | |
39 | 38 | adantr | |
40 | 22 39 | mpbid | |
41 | 40 | 3an1rs | |
42 | 41 | ralrimiva | |