Metamath Proof Explorer


Theorem nmoolb

Description: A lower bound for an operator norm. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nmoolb.1 X=BaseSetU
nmoolb.2 Y=BaseSetW
nmoolb.l L=normCVU
nmoolb.m M=normCVW
nmoolb.3 N=UnormOpOLDW
Assertion nmoolb UNrmCVecWNrmCVecT:XYAXLA1MTANT

Proof

Step Hyp Ref Expression
1 nmoolb.1 X=BaseSetU
2 nmoolb.2 Y=BaseSetW
3 nmoolb.l L=normCVU
4 nmoolb.m M=normCVW
5 nmoolb.3 N=UnormOpOLDW
6 2 4 nmosetre WNrmCVecT:XYx|yXLy1x=MTy
7 ressxr *
8 6 7 sstrdi WNrmCVecT:XYx|yXLy1x=MTy*
9 8 3adant1 UNrmCVecWNrmCVecT:XYx|yXLy1x=MTy*
10 fveq2 y=ALy=LA
11 10 breq1d y=ALy1LA1
12 2fveq3 y=AMTy=MTA
13 12 eqeq2d y=AMTA=MTyMTA=MTA
14 11 13 anbi12d y=ALy1MTA=MTyLA1MTA=MTA
15 eqid MTA=MTA
16 15 biantru LA1LA1MTA=MTA
17 14 16 bitr4di y=ALy1MTA=MTyLA1
18 17 rspcev AXLA1yXLy1MTA=MTy
19 fvex MTAV
20 eqeq1 x=MTAx=MTyMTA=MTy
21 20 anbi2d x=MTALy1x=MTyLy1MTA=MTy
22 21 rexbidv x=MTAyXLy1x=MTyyXLy1MTA=MTy
23 19 22 elab MTAx|yXLy1x=MTyyXLy1MTA=MTy
24 18 23 sylibr AXLA1MTAx|yXLy1x=MTy
25 supxrub x|yXLy1x=MTy*MTAx|yXLy1x=MTyMTAsupx|yXLy1x=MTy*<
26 9 24 25 syl2an UNrmCVecWNrmCVecT:XYAXLA1MTAsupx|yXLy1x=MTy*<
27 1 2 3 4 5 nmooval UNrmCVecWNrmCVecT:XYNT=supx|yXLy1x=MTy*<
28 27 adantr UNrmCVecWNrmCVecT:XYAXLA1NT=supx|yXLy1x=MTy*<
29 26 28 breqtrrd UNrmCVecWNrmCVecT:XYAXLA1MTANT