Metamath Proof Explorer


Theorem ntrclsk3

Description: The intersection of interiors of a every pair is a subset of the interior of the intersection of the pair if an only if the closure of the union of every pair is a subset of the union of closures of the pair. (Contributed by RP, 19-Jun-2021)

Ref Expression
Hypotheses ntrcls.o O=iVk𝒫i𝒫ij𝒫iikij
ntrcls.d D=OB
ntrcls.r φIDK
Assertion ntrclsk3 φs𝒫Bt𝒫BIsItIsts𝒫Bt𝒫BKstKsKt

Proof

Step Hyp Ref Expression
1 ntrcls.o O=iVk𝒫i𝒫ij𝒫iikij
2 ntrcls.d D=OB
3 ntrcls.r φIDK
4 fveq2 s=aIs=Ia
5 4 ineq1d s=aIsIt=IaIt
6 ineq1 s=ast=at
7 6 fveq2d s=aIst=Iat
8 5 7 sseq12d s=aIsItIstIaItIat
9 fveq2 t=bIt=Ib
10 9 ineq2d t=bIaIt=IaIb
11 ineq2 t=bat=ab
12 11 fveq2d t=bIat=Iab
13 10 12 sseq12d t=bIaItIatIaIbIab
14 8 13 cbvral2vw s𝒫Bt𝒫BIsItIsta𝒫Bb𝒫BIaIbIab
15 2 3 ntrclsbex φBV
16 difssd φBsB
17 15 16 sselpwd φBs𝒫B
18 17 adantr φs𝒫BBs𝒫B
19 elpwi a𝒫BaB
20 simpl BVaBBV
21 difssd BVaBBaB
22 20 21 sselpwd BVaBBa𝒫B
23 simpr BVaBs=Bas=Ba
24 23 difeq2d BVaBs=BaBs=BBa
25 24 eqeq2d BVaBs=Baa=Bsa=BBa
26 eqcom a=BBaBBa=a
27 25 26 bitrdi BVaBs=Baa=BsBBa=a
28 dfss4 aBBBa=a
29 28 biimpi aBBBa=a
30 29 adantl BVaBBBa=a
31 22 27 30 rspcedvd BVaBs𝒫Ba=Bs
32 15 19 31 syl2an φa𝒫Bs𝒫Ba=Bs
33 simpl1 φs𝒫Ba=Bst𝒫Bφ
34 difssd φBtB
35 15 34 sselpwd φBt𝒫B
36 33 35 syl φs𝒫Ba=Bst𝒫BBt𝒫B
37 elpwi b𝒫BbB
38 simpl BVbBBV
39 difssd BVbBBbB
40 38 39 sselpwd BVbBBb𝒫B
41 simpr BVbBt=Bbt=Bb
42 41 difeq2d BVbBt=BbBt=BBb
43 42 eqeq2d BVbBt=Bbb=Btb=BBb
44 eqcom b=BBbBBb=b
45 43 44 bitrdi BVbBt=Bbb=BtBBb=b
46 dfss4 bBBBb=b
47 46 biimpi bBBBb=b
48 47 adantl BVbBBBb=b
49 40 45 48 rspcedvd BVbBt𝒫Bb=Bt
50 15 37 49 syl2an φb𝒫Bt𝒫Bb=Bt
51 50 3ad2antl1 φs𝒫Ba=Bsb𝒫Bt𝒫Bb=Bt
52 simp13 φs𝒫Ba=Bst𝒫Bb=Bta=Bs
53 fveq2 a=BsIa=IBs
54 53 ineq1d a=BsIaIb=IBsIb
55 ineq1 a=Bsab=Bsb
56 55 fveq2d a=BsIab=IBsb
57 54 56 sseq12d a=BsIaIbIabIBsIbIBsb
58 52 57 syl φs𝒫Ba=Bst𝒫Bb=BtIaIbIabIBsIbIBsb
59 fveq2 b=BtIb=IBt
60 59 ineq2d b=BtIBsIb=IBsIBt
61 ineq2 b=BtBsb=BsBt
62 difundi Bst=BsBt
63 61 62 eqtr4di b=BtBsb=Bst
64 63 fveq2d b=BtIBsb=IBst
65 60 64 sseq12d b=BtIBsIbIBsbIBsIBtIBst
66 65 3ad2ant3 φs𝒫Ba=Bst𝒫Bb=BtIBsIbIBsbIBsIBtIBst
67 simp11 φs𝒫Ba=Bst𝒫Bb=Btφ
68 1 2 3 ntrclsiex φI𝒫B𝒫B
69 68 15 jca φI𝒫B𝒫BBV
70 67 69 syl φs𝒫Ba=Bst𝒫Bb=BtI𝒫B𝒫BBV
71 elmapi I𝒫B𝒫BI:𝒫B𝒫B
72 71 adantr I𝒫B𝒫BBVI:𝒫B𝒫B
73 simpr I𝒫B𝒫BBVBV
74 difssd I𝒫B𝒫BBVBsB
75 73 74 sselpwd I𝒫B𝒫BBVBs𝒫B
76 72 75 ffvelcdmd I𝒫B𝒫BBVIBs𝒫B
77 76 elpwid I𝒫B𝒫BBVIBsB
78 orc IBsBIBsBIBtB
79 inss IBsBIBtBIBsIBtB
80 77 78 79 3syl I𝒫B𝒫BBVIBsIBtB
81 difssd I𝒫B𝒫BBVBstB
82 73 81 sselpwd I𝒫B𝒫BBVBst𝒫B
83 72 82 ffvelcdmd I𝒫B𝒫BBVIBst𝒫B
84 83 elpwid I𝒫B𝒫BBVIBstB
85 80 84 jca I𝒫B𝒫BBVIBsIBtBIBstB
86 sscon34b IBsIBtBIBstBIBsIBtIBstBIBstBIBsIBt
87 70 85 86 3syl φs𝒫Ba=Bst𝒫Bb=BtIBsIBtIBstBIBstBIBsIBt
88 difindi BIBsIBt=BIBsBIBt
89 88 sseq2i BIBstBIBsIBtBIBstBIBsBIBt
90 89 a1i φs𝒫Ba=Bst𝒫Bb=BtBIBstBIBsIBtBIBstBIBsBIBt
91 67 15 syl φs𝒫Ba=Bst𝒫Bb=BtBV
92 67 68 syl φs𝒫Ba=Bst𝒫Bb=BtI𝒫B𝒫B
93 simp12 φs𝒫Ba=Bst𝒫Bb=Bts𝒫B
94 rp-simp2 φs𝒫Ba=Bst𝒫Bb=Btt𝒫B
95 simpl2 φBVI𝒫B𝒫Bs𝒫Bt𝒫BBV
96 simpl3 φBVI𝒫B𝒫Bs𝒫Bt𝒫BI𝒫B𝒫B
97 eqid DI=DI
98 simpl BVs𝒫Bt𝒫BBV
99 simprl BVs𝒫Bt𝒫Bs𝒫B
100 99 elpwid BVs𝒫Bt𝒫BsB
101 simprr BVs𝒫Bt𝒫Bt𝒫B
102 101 elpwid BVs𝒫Bt𝒫BtB
103 100 102 unssd BVs𝒫Bt𝒫BstB
104 98 103 sselpwd BVs𝒫Bt𝒫Bst𝒫B
105 104 3ad2antl2 φBVI𝒫B𝒫Bs𝒫Bt𝒫Bst𝒫B
106 eqid DIst=DIst
107 1 2 95 96 97 105 106 dssmapfv3d φBVI𝒫B𝒫Bs𝒫Bt𝒫BDIst=BIBst
108 simpl1 φBVI𝒫B𝒫Bs𝒫Bt𝒫Bφ
109 1 2 3 ntrclsfv1 φDI=K
110 109 fveq1d φDIst=Kst
111 108 110 syl φBVI𝒫B𝒫Bs𝒫Bt𝒫BDIst=Kst
112 107 111 eqtr3d φBVI𝒫B𝒫Bs𝒫Bt𝒫BBIBst=Kst
113 simprl φBVI𝒫B𝒫Bs𝒫Bt𝒫Bs𝒫B
114 eqid DIs=DIs
115 1 2 95 96 97 113 114 dssmapfv3d φBVI𝒫B𝒫Bs𝒫Bt𝒫BDIs=BIBs
116 109 fveq1d φDIs=Ks
117 108 116 syl φBVI𝒫B𝒫Bs𝒫Bt𝒫BDIs=Ks
118 115 117 eqtr3d φBVI𝒫B𝒫Bs𝒫Bt𝒫BBIBs=Ks
119 simprr φBVI𝒫B𝒫Bs𝒫Bt𝒫Bt𝒫B
120 eqid DIt=DIt
121 1 2 95 96 97 119 120 dssmapfv3d φBVI𝒫B𝒫Bs𝒫Bt𝒫BDIt=BIBt
122 109 fveq1d φDIt=Kt
123 108 122 syl φBVI𝒫B𝒫Bs𝒫Bt𝒫BDIt=Kt
124 121 123 eqtr3d φBVI𝒫B𝒫Bs𝒫Bt𝒫BBIBt=Kt
125 118 124 uneq12d φBVI𝒫B𝒫Bs𝒫Bt𝒫BBIBsBIBt=KsKt
126 112 125 sseq12d φBVI𝒫B𝒫Bs𝒫Bt𝒫BBIBstBIBsBIBtKstKsKt
127 67 91 92 93 94 126 syl32anc φs𝒫Ba=Bst𝒫Bb=BtBIBstBIBsBIBtKstKsKt
128 87 90 127 3bitrd φs𝒫Ba=Bst𝒫Bb=BtIBsIBtIBstKstKsKt
129 58 66 128 3bitrd φs𝒫Ba=Bst𝒫Bb=BtIaIbIabKstKsKt
130 36 51 129 ralxfrd2 φs𝒫Ba=Bsb𝒫BIaIbIabt𝒫BKstKsKt
131 18 32 130 ralxfrd2 φa𝒫Bb𝒫BIaIbIabs𝒫Bt𝒫BKstKsKt
132 14 131 bitrid φs𝒫Bt𝒫BIsItIsts𝒫Bt𝒫BKstKsKt