Metamath Proof Explorer


Theorem numclwlk1lem2

Description: Lemma 2 for numclwlk1 (Statement 9 in Huneke p. 2 for n>2). This theorem corresponds to numclwwlk1 , using the general definition of walks instead of walks as words. (Contributed by AV, 4-Jun-2022)

Ref Expression
Hypotheses numclwlk1.v V=VtxG
numclwlk1.c C=wClWalksG|1stw=N2ndw0=X2ndwN2=X
numclwlk1.f F=wClWalksG|1stw=N22ndw0=X
Assertion numclwlk1lem2 VFinGRegUSGraphKXVN3C=KF

Proof

Step Hyp Ref Expression
1 numclwlk1.v V=VtxG
2 numclwlk1.c C=wClWalksG|1stw=N2ndw0=X2ndwN2=X
3 numclwlk1.f F=wClWalksG|1stw=N22ndw0=X
4 rusgrusgr GRegUSGraphKGUSGraph
5 usgruspgr GUSGraphGUSHGraph
6 4 5 syl GRegUSGraphKGUSHGraph
7 6 ad2antlr VFinGRegUSGraphKXVN3GUSHGraph
8 simpl XVN3XV
9 8 adantl VFinGRegUSGraphKXVN3XV
10 uzuzle23 N3N2
11 10 ad2antll VFinGRegUSGraphKXVN3N2
12 eqid wXClWWalksNOnGN|wN2=X=wXClWWalksNOnGN|wN2=X
13 1 2 12 dlwwlknondlwlknonen GUSHGraphXVN2CwXClWWalksNOnGN|wN2=X
14 7 9 11 13 syl3anc VFinGRegUSGraphKXVN3CwXClWWalksNOnGN|wN2=X
15 4 anim2i VFinGRegUSGraphKVFinGUSGraph
16 15 ancomd VFinGRegUSGraphKGUSGraphVFin
17 1 isfusgr GFinUSGraphGUSGraphVFin
18 16 17 sylibr VFinGRegUSGraphKGFinUSGraph
19 eluzge3nn N3N
20 19 nnnn0d N3N0
21 20 adantl XVN3N0
22 wlksnfi GFinUSGraphN0wWalksG|1stw=NFin
23 18 21 22 syl2an VFinGRegUSGraphKXVN3wWalksG|1stw=NFin
24 clwlkswks ClWalksGWalksG
25 24 a1i VFinGRegUSGraphKXVN3ClWalksGWalksG
26 simp21 VFinGRegUSGraphKXVN31stw=N2ndw0=X2ndwN2=XwClWalksG1stw=N
27 25 26 rabssrabd VFinGRegUSGraphKXVN3wClWalksG|1stw=N2ndw0=X2ndwN2=XwWalksG|1stw=N
28 23 27 ssfid VFinGRegUSGraphKXVN3wClWalksG|1stw=N2ndw0=X2ndwN2=XFin
29 2 28 eqeltrid VFinGRegUSGraphKXVN3CFin
30 1 clwwlknonfin VFinXClWWalksNOnGNFin
31 30 ad2antrr VFinGRegUSGraphKXVN3XClWWalksNOnGNFin
32 ssrab2 wXClWWalksNOnGN|wN2=XXClWWalksNOnGN
33 32 a1i VFinGRegUSGraphKXVN3wXClWWalksNOnGN|wN2=XXClWWalksNOnGN
34 31 33 ssfid VFinGRegUSGraphKXVN3wXClWWalksNOnGN|wN2=XFin
35 hashen CFinwXClWWalksNOnGN|wN2=XFinC=wXClWWalksNOnGN|wN2=XCwXClWWalksNOnGN|wN2=X
36 29 34 35 syl2anc VFinGRegUSGraphKXVN3C=wXClWWalksNOnGN|wN2=XCwXClWWalksNOnGN|wN2=X
37 14 36 mpbird VFinGRegUSGraphKXVN3C=wXClWWalksNOnGN|wN2=X
38 eqidd VFinGRegUSGraphKXVN3vV,n2wvClWWalksNOnGn|wn2=v=vV,n2wvClWWalksNOnGn|wn2=v
39 oveq12 v=Xn=NvClWWalksNOnGn=XClWWalksNOnGN
40 fvoveq1 n=Nwn2=wN2
41 40 adantl v=Xn=Nwn2=wN2
42 simpl v=Xn=Nv=X
43 41 42 eqeq12d v=Xn=Nwn2=vwN2=X
44 39 43 rabeqbidv v=Xn=NwvClWWalksNOnGn|wn2=v=wXClWWalksNOnGN|wN2=X
45 44 adantl VFinGRegUSGraphKXVN3v=Xn=NwvClWWalksNOnGn|wn2=v=wXClWWalksNOnGN|wN2=X
46 ovex XClWWalksNOnGNV
47 46 rabex wXClWWalksNOnGN|wN2=XV
48 47 a1i VFinGRegUSGraphKXVN3wXClWWalksNOnGN|wN2=XV
49 38 45 9 11 48 ovmpod VFinGRegUSGraphKXVN3XvV,n2wvClWWalksNOnGn|wn2=vN=wXClWWalksNOnGN|wN2=X
50 49 fveq2d VFinGRegUSGraphKXVN3XvV,n2wvClWWalksNOnGn|wn2=vN=wXClWWalksNOnGN|wN2=X
51 eqid vV,n2wvClWWalksNOnGn|wn2=v=vV,n2wvClWWalksNOnGn|wn2=v
52 eqid XClWWalksNOnGN2=XClWWalksNOnGN2
53 1 51 52 numclwwlk1 VFinGRegUSGraphKXVN3XvV,n2wvClWWalksNOnGn|wn2=vN=KXClWWalksNOnGN2
54 8 1 eleqtrdi XVN3XVtxG
55 54 adantl VFinGRegUSGraphKXVN3XVtxG
56 uz3m2nn N3N2
57 56 ad2antll VFinGRegUSGraphKXVN3N2
58 clwwlknonclwlknonen GUSHGraphXVtxGN2wClWalksG|1stw=N22ndw0=XXClWWalksNOnGN2
59 7 55 57 58 syl3anc VFinGRegUSGraphKXVN3wClWalksG|1stw=N22ndw0=XXClWWalksNOnGN2
60 3 59 eqbrtrid VFinGRegUSGraphKXVN3FXClWWalksNOnGN2
61 uznn0sub N2N20
62 10 61 syl N3N20
63 62 adantl XVN3N20
64 wlksnfi GFinUSGraphN20wWalksG|1stw=N2Fin
65 18 63 64 syl2an VFinGRegUSGraphKXVN3wWalksG|1stw=N2Fin
66 simp2l VFinGRegUSGraphKXVN31stw=N22ndw0=XwClWalksG1stw=N2
67 25 66 rabssrabd VFinGRegUSGraphKXVN3wClWalksG|1stw=N22ndw0=XwWalksG|1stw=N2
68 65 67 ssfid VFinGRegUSGraphKXVN3wClWalksG|1stw=N22ndw0=XFin
69 3 68 eqeltrid VFinGRegUSGraphKXVN3FFin
70 1 clwwlknonfin VFinXClWWalksNOnGN2Fin
71 70 ad2antrr VFinGRegUSGraphKXVN3XClWWalksNOnGN2Fin
72 hashen FFinXClWWalksNOnGN2FinF=XClWWalksNOnGN2FXClWWalksNOnGN2
73 69 71 72 syl2anc VFinGRegUSGraphKXVN3F=XClWWalksNOnGN2FXClWWalksNOnGN2
74 60 73 mpbird VFinGRegUSGraphKXVN3F=XClWWalksNOnGN2
75 74 eqcomd VFinGRegUSGraphKXVN3XClWWalksNOnGN2=F
76 75 oveq2d VFinGRegUSGraphKXVN3KXClWWalksNOnGN2=KF
77 53 76 eqtrd VFinGRegUSGraphKXVN3XvV,n2wvClWWalksNOnGn|wn2=vN=KF
78 37 50 77 3eqtr2d VFinGRegUSGraphKXVN3C=KF