Metamath Proof Explorer


Theorem numclwwlk1

Description: Statement 9 in Huneke p. 2: "If n > 1, then the number of closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) with v(n-2) = v is kf(n-2)". Since G is k-regular, the vertex v(n-2) = v has k neighbors v(n-1), so there are k walks from v(n-2) = v to v(n) = v (via each of v's neighbors) completing each of the f(n-2) walks from v=v(0) to v(n-2)=v. This theorem holds even for k=0, but not for n=2, since F = (/) , but ( X C 2 ) , the set of closed walks with length 2 on X , see 2clwwlk2 , needs not be (/) in this case. This is because of the special definition of F and the usage of words to represent (closed) walks, and does not contradict Huneke's statement, which would read "the number of closed 2-walks v(0) v(1) v(2) from v = v(0) = v(2) ... is kf(0)", where f(0)=1 is the number of empty closed walks on v, see numclwlk1lem1 . If the general representation of (closed) walk is used, Huneke's statement can be proven even for n = 2, see numclwlk1 . This case, however, is not required to prove the friendship theorem. (Contributed by Alexander van der Vekens, 26-Sep-2018) (Revised by AV, 29-May-2021) (Revised by AV, 6-Mar-2022) (Proof shortened by AV, 31-Jul-2022)

Ref Expression
Hypotheses extwwlkfab.v V=VtxG
extwwlkfab.c C=vV,n2wvClWWalksNOnGn|wn2=v
extwwlkfab.f F=XClWWalksNOnGN2
Assertion numclwwlk1 VFinGRegUSGraphKXVN3XCN=KF

Proof

Step Hyp Ref Expression
1 extwwlkfab.v V=VtxG
2 extwwlkfab.c C=vV,n2wvClWWalksNOnGn|wn2=v
3 extwwlkfab.f F=XClWWalksNOnGN2
4 rusgrusgr GRegUSGraphKGUSGraph
5 4 ad2antlr VFinGRegUSGraphKXVN3GUSGraph
6 simprl VFinGRegUSGraphKXVN3XV
7 simprr VFinGRegUSGraphKXVN3N3
8 1 2 3 numclwwlk1lem2 GUSGraphXVN3XCNF×GNeighbVtxX
9 5 6 7 8 syl3anc VFinGRegUSGraphKXVN3XCNF×GNeighbVtxX
10 hasheni XCNF×GNeighbVtxXXCN=F×GNeighbVtxX
11 9 10 syl VFinGRegUSGraphKXVN3XCN=F×GNeighbVtxX
12 eqid VtxG=VtxG
13 12 clwwlknonfin VtxGFinXClWWalksNOnGN2Fin
14 1 eleq1i VFinVtxGFin
15 3 eleq1i FFinXClWWalksNOnGN2Fin
16 13 14 15 3imtr4i VFinFFin
17 16 adantr VFinGRegUSGraphKFFin
18 17 adantr VFinGRegUSGraphKXVN3FFin
19 1 finrusgrfusgr GRegUSGraphKVFinGFinUSGraph
20 19 ancoms VFinGRegUSGraphKGFinUSGraph
21 fusgrfis GFinUSGraphEdgGFin
22 20 21 syl VFinGRegUSGraphKEdgGFin
23 22 adantr VFinGRegUSGraphKXVN3EdgGFin
24 eqid EdgG=EdgG
25 1 24 nbusgrfi GUSGraphEdgGFinXVGNeighbVtxXFin
26 5 23 6 25 syl3anc VFinGRegUSGraphKXVN3GNeighbVtxXFin
27 hashxp FFinGNeighbVtxXFinF×GNeighbVtxX=FGNeighbVtxX
28 18 26 27 syl2anc VFinGRegUSGraphKXVN3F×GNeighbVtxX=FGNeighbVtxX
29 1 rusgrpropnb GRegUSGraphKGUSGraphK0*xVGNeighbVtxx=K
30 oveq2 x=XGNeighbVtxx=GNeighbVtxX
31 30 fveqeq2d x=XGNeighbVtxx=KGNeighbVtxX=K
32 31 rspccv xVGNeighbVtxx=KXVGNeighbVtxX=K
33 32 3ad2ant3 GUSGraphK0*xVGNeighbVtxx=KXVGNeighbVtxX=K
34 29 33 syl GRegUSGraphKXVGNeighbVtxX=K
35 34 adantl VFinGRegUSGraphKXVGNeighbVtxX=K
36 35 com12 XVVFinGRegUSGraphKGNeighbVtxX=K
37 36 adantr XVN3VFinGRegUSGraphKGNeighbVtxX=K
38 37 impcom VFinGRegUSGraphKXVN3GNeighbVtxX=K
39 38 oveq2d VFinGRegUSGraphKXVN3FGNeighbVtxX=FK
40 hashcl FFinF0
41 nn0cn F0F
42 18 40 41 3syl VFinGRegUSGraphKXVN3F
43 20 adantr VFinGRegUSGraphKXVN3GFinUSGraph
44 simplr VFinGRegUSGraphKXVN3GRegUSGraphK
45 ne0i XVV
46 45 adantr XVN3V
47 46 adantl VFinGRegUSGraphKXVN3V
48 1 frusgrnn0 GFinUSGraphGRegUSGraphKVK0
49 43 44 47 48 syl3anc VFinGRegUSGraphKXVN3K0
50 49 nn0cnd VFinGRegUSGraphKXVN3K
51 42 50 mulcomd VFinGRegUSGraphKXVN3FK=KF
52 39 51 eqtrd VFinGRegUSGraphKXVN3FGNeighbVtxX=KF
53 11 28 52 3eqtrd VFinGRegUSGraphKXVN3XCN=KF