| Step |
Hyp |
Ref |
Expression |
| 1 |
|
numclwwlk6.v |
|
| 2 |
|
simpll |
|
| 3 |
|
simplr |
|
| 4 |
|
simprr |
|
| 5 |
2 3 4
|
3jca |
|
| 6 |
1
|
numclwwlk6 |
|
| 7 |
5 6
|
stoic3 |
|
| 8 |
|
simp2 |
|
| 9 |
8
|
ancomd |
|
| 10 |
|
simp1 |
|
| 11 |
10
|
ancomd |
|
| 12 |
1
|
frrusgrord |
|
| 13 |
9 11 12
|
sylc |
|
| 14 |
13
|
oveq1d |
|
| 15 |
1
|
numclwwlk7lem |
|
| 16 |
|
nn0cn |
|
| 17 |
|
peano2cnm |
|
| 18 |
16 17
|
syl |
|
| 19 |
16 18
|
mulcomd |
|
| 20 |
19
|
oveq1d |
|
| 21 |
20
|
adantr |
|
| 22 |
|
prmnn |
|
| 23 |
22
|
ad2antrl |
|
| 24 |
|
nn0z |
|
| 25 |
|
peano2zm |
|
| 26 |
24 25
|
syl |
|
| 27 |
26
|
adantr |
|
| 28 |
24
|
adantr |
|
| 29 |
23 27 28
|
3jca |
|
| 30 |
|
simprr |
|
| 31 |
|
mulmoddvds |
|
| 32 |
29 30 31
|
sylc |
|
| 33 |
21 32
|
eqtrd |
|
| 34 |
22
|
nnred |
|
| 35 |
|
prmgt1 |
|
| 36 |
34 35
|
jca |
|
| 37 |
36
|
ad2antrl |
|
| 38 |
|
1mod |
|
| 39 |
37 38
|
syl |
|
| 40 |
33 39
|
oveq12d |
|
| 41 |
40
|
oveq1d |
|
| 42 |
|
nn0re |
|
| 43 |
|
peano2rem |
|
| 44 |
42 43
|
syl |
|
| 45 |
42 44
|
remulcld |
|
| 46 |
45
|
adantr |
|
| 47 |
|
1red |
|
| 48 |
22
|
nnrpd |
|
| 49 |
48
|
ad2antrl |
|
| 50 |
|
modaddabs |
|
| 51 |
46 47 49 50
|
syl3anc |
|
| 52 |
|
0p1e1 |
|
| 53 |
52
|
oveq1i |
|
| 54 |
34 35 38
|
syl2anc |
|
| 55 |
54
|
ad2antrl |
|
| 56 |
53 55
|
eqtrid |
|
| 57 |
41 51 56
|
3eqtr3d |
|
| 58 |
15 57
|
stoic3 |
|
| 59 |
7 14 58
|
3eqtrd |
|