Metamath Proof Explorer


Theorem numclwwlk7

Description: Statement 14 in Huneke p. 2: "The total number of closed walks of length p [in a friendship graph] is (k(k-1)+1)f(p)=1 (mod p)", since the number of vertices in a friendship graph is (k(k-1)+1), see frrusgrord0 or frrusgrord , and p divides (k-1), i.e., (k-1) mod p = 0 => k(k-1) mod p = 0 => k(k-1)+1 mod p = 1. Since the null graph is a friendship graph, see frgr0 , as well as k-regular (for any k), see 0vtxrgr , but has no closed walk, see 0clwlk0 , this theorem would be false for a null graph: ( ( #( P ClWWalksN G ) ) mod P ) = 0 =/= 1 , so this case must be excluded (by assuming V =/= (/) ). (Contributed by Alexander van der Vekens, 1-Sep-2018) (Revised by AV, 3-Jun-2021)

Ref Expression
Hypothesis numclwwlk6.v V=VtxG
Assertion numclwwlk7 GRegUSGraphKGFriendGraphVVFinPPK1PClWWalksNGmodP=1

Proof

Step Hyp Ref Expression
1 numclwwlk6.v V=VtxG
2 simpll GRegUSGraphKGFriendGraphVVFinGRegUSGraphK
3 simplr GRegUSGraphKGFriendGraphVVFinGFriendGraph
4 simprr GRegUSGraphKGFriendGraphVVFinVFin
5 2 3 4 3jca GRegUSGraphKGFriendGraphVVFinGRegUSGraphKGFriendGraphVFin
6 1 numclwwlk6 GRegUSGraphKGFriendGraphVFinPPK1PClWWalksNGmodP=VmodP
7 5 6 stoic3 GRegUSGraphKGFriendGraphVVFinPPK1PClWWalksNGmodP=VmodP
8 simp2 GRegUSGraphKGFriendGraphVVFinPPK1VVFin
9 8 ancomd GRegUSGraphKGFriendGraphVVFinPPK1VFinV
10 simp1 GRegUSGraphKGFriendGraphVVFinPPK1GRegUSGraphKGFriendGraph
11 10 ancomd GRegUSGraphKGFriendGraphVVFinPPK1GFriendGraphGRegUSGraphK
12 1 frrusgrord VFinVGFriendGraphGRegUSGraphKV=KK1+1
13 9 11 12 sylc GRegUSGraphKGFriendGraphVVFinPPK1V=KK1+1
14 13 oveq1d GRegUSGraphKGFriendGraphVVFinPPK1VmodP=KK1+1modP
15 1 numclwwlk7lem GRegUSGraphKGFriendGraphVVFinK0
16 nn0cn K0K
17 peano2cnm KK1
18 16 17 syl K0K1
19 16 18 mulcomd K0KK1=K1K
20 19 oveq1d K0KK1modP=K1KmodP
21 20 adantr K0PPK1KK1modP=K1KmodP
22 prmnn PP
23 22 ad2antrl K0PPK1P
24 nn0z K0K
25 peano2zm KK1
26 24 25 syl K0K1
27 26 adantr K0PPK1K1
28 24 adantr K0PPK1K
29 23 27 28 3jca K0PPK1PK1K
30 simprr K0PPK1PK1
31 mulmoddvds PK1KPK1K1KmodP=0
32 29 30 31 sylc K0PPK1K1KmodP=0
33 21 32 eqtrd K0PPK1KK1modP=0
34 22 nnred PP
35 prmgt1 P1<P
36 34 35 jca PP1<P
37 36 ad2antrl K0PPK1P1<P
38 1mod P1<P1modP=1
39 37 38 syl K0PPK11modP=1
40 33 39 oveq12d K0PPK1KK1modP+1modP=0+1
41 40 oveq1d K0PPK1KK1modP+1modPmodP=0+1modP
42 nn0re K0K
43 peano2rem KK1
44 42 43 syl K0K1
45 42 44 remulcld K0KK1
46 45 adantr K0PPK1KK1
47 1red K0PPK11
48 22 nnrpd PP+
49 48 ad2antrl K0PPK1P+
50 modaddabs KK11P+KK1modP+1modPmodP=KK1+1modP
51 46 47 49 50 syl3anc K0PPK1KK1modP+1modPmodP=KK1+1modP
52 0p1e1 0+1=1
53 52 oveq1i 0+1modP=1modP
54 34 35 38 syl2anc P1modP=1
55 54 ad2antrl K0PPK11modP=1
56 53 55 eqtrid K0PPK10+1modP=1
57 41 51 56 3eqtr3d K0PPK1KK1+1modP=1
58 15 57 stoic3 GRegUSGraphKGFriendGraphVVFinPPK1KK1+1modP=1
59 7 14 58 3eqtrd GRegUSGraphKGFriendGraphVVFinPPK1PClWWalksNGmodP=1