Description: Statement 14 in Huneke p. 2: "The total number of closed walks of length p [in a friendship graph] is (k(k-1)+1)f(p)=1 (mod p)", since the number of vertices in a friendship graph is (k(k-1)+1), see frrusgrord0 or frrusgrord , and p divides (k-1), i.e., (k-1) mod p = 0 => k(k-1) mod p = 0 => k(k-1)+1 mod p = 1. Since the null graph is a friendship graph, see frgr0 , as well as k-regular (for any k), see 0vtxrgr , but has no closed walk, see 0clwlk0 , this theorem would be false for a null graph: ( ( #( P ClWWalksN G ) ) mod P ) = 0 =/= 1 , so this case must be excluded (by assuming V =/= (/) ). (Contributed by Alexander van der Vekens, 1-Sep-2018) (Revised by AV, 3-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | numclwwlk6.v | |
|
Assertion | numclwwlk7 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numclwwlk6.v | |
|
2 | simpll | |
|
3 | simplr | |
|
4 | simprr | |
|
5 | 2 3 4 | 3jca | |
6 | 1 | numclwwlk6 | |
7 | 5 6 | stoic3 | |
8 | simp2 | |
|
9 | 8 | ancomd | |
10 | simp1 | |
|
11 | 10 | ancomd | |
12 | 1 | frrusgrord | |
13 | 9 11 12 | sylc | |
14 | 13 | oveq1d | |
15 | 1 | numclwwlk7lem | |
16 | nn0cn | |
|
17 | peano2cnm | |
|
18 | 16 17 | syl | |
19 | 16 18 | mulcomd | |
20 | 19 | oveq1d | |
21 | 20 | adantr | |
22 | prmnn | |
|
23 | 22 | ad2antrl | |
24 | nn0z | |
|
25 | peano2zm | |
|
26 | 24 25 | syl | |
27 | 26 | adantr | |
28 | 24 | adantr | |
29 | 23 27 28 | 3jca | |
30 | simprr | |
|
31 | mulmoddvds | |
|
32 | 29 30 31 | sylc | |
33 | 21 32 | eqtrd | |
34 | 22 | nnred | |
35 | prmgt1 | |
|
36 | 34 35 | jca | |
37 | 36 | ad2antrl | |
38 | 1mod | |
|
39 | 37 38 | syl | |
40 | 33 39 | oveq12d | |
41 | 40 | oveq1d | |
42 | nn0re | |
|
43 | peano2rem | |
|
44 | 42 43 | syl | |
45 | 42 44 | remulcld | |
46 | 45 | adantr | |
47 | 1red | |
|
48 | 22 | nnrpd | |
49 | 48 | ad2antrl | |
50 | modaddabs | |
|
51 | 46 47 49 50 | syl3anc | |
52 | 0p1e1 | |
|
53 | 52 | oveq1i | |
54 | 34 35 38 | syl2anc | |
55 | 54 | ad2antrl | |
56 | 53 55 | eqtrid | |
57 | 41 51 56 | 3eqtr3d | |
58 | 15 57 | stoic3 | |
59 | 7 14 58 | 3eqtrd | |