Step |
Hyp |
Ref |
Expression |
1 |
|
numclwwlk6.v |
|
2 |
|
simpll |
|
3 |
|
simplr |
|
4 |
|
simprr |
|
5 |
2 3 4
|
3jca |
|
6 |
1
|
numclwwlk6 |
|
7 |
5 6
|
stoic3 |
|
8 |
|
simp2 |
|
9 |
8
|
ancomd |
|
10 |
|
simp1 |
|
11 |
10
|
ancomd |
|
12 |
1
|
frrusgrord |
|
13 |
9 11 12
|
sylc |
|
14 |
13
|
oveq1d |
|
15 |
1
|
numclwwlk7lem |
|
16 |
|
nn0cn |
|
17 |
|
peano2cnm |
|
18 |
16 17
|
syl |
|
19 |
16 18
|
mulcomd |
|
20 |
19
|
oveq1d |
|
21 |
20
|
adantr |
|
22 |
|
prmnn |
|
23 |
22
|
ad2antrl |
|
24 |
|
nn0z |
|
25 |
|
peano2zm |
|
26 |
24 25
|
syl |
|
27 |
26
|
adantr |
|
28 |
24
|
adantr |
|
29 |
23 27 28
|
3jca |
|
30 |
|
simprr |
|
31 |
|
mulmoddvds |
|
32 |
29 30 31
|
sylc |
|
33 |
21 32
|
eqtrd |
|
34 |
22
|
nnred |
|
35 |
|
prmgt1 |
|
36 |
34 35
|
jca |
|
37 |
36
|
ad2antrl |
|
38 |
|
1mod |
|
39 |
37 38
|
syl |
|
40 |
33 39
|
oveq12d |
|
41 |
40
|
oveq1d |
|
42 |
|
nn0re |
|
43 |
|
peano2rem |
|
44 |
42 43
|
syl |
|
45 |
42 44
|
remulcld |
|
46 |
45
|
adantr |
|
47 |
|
1red |
|
48 |
22
|
nnrpd |
|
49 |
48
|
ad2antrl |
|
50 |
|
modaddabs |
|
51 |
46 47 49 50
|
syl3anc |
|
52 |
|
0p1e1 |
|
53 |
52
|
oveq1i |
|
54 |
34 35 38
|
syl2anc |
|
55 |
54
|
ad2antrl |
|
56 |
53 55
|
eqtrid |
|
57 |
41 51 56
|
3eqtr3d |
|
58 |
15 57
|
stoic3 |
|
59 |
7 14 58
|
3eqtrd |
|