Metamath Proof Explorer


Theorem nummin

Description: Every nonempty class of numerable sets has a minimal element. (Contributed by BTernaryTau, 18-Jul-2024)

Ref Expression
Assertion nummin A dom card A x A Pred A x =

Proof

Step Hyp Ref Expression
1 cardf2 card : z | y On y z On
2 ffun card : z | y On y z On Fun card
3 2 funfnd card : z | y On y z On card Fn dom card
4 1 3 ax-mp card Fn dom card
5 fnimaeq0 card Fn dom card A dom card card A = A =
6 4 5 mpan A dom card card A = A =
7 6 necon3bid A dom card card A A
8 7 biimprd A dom card A card A
9 8 imdistani A dom card A A dom card card A
10 fimass card : z | y On y z On card A On
11 1 10 ax-mp card A On
12 onssmin card A On card A z card A y card A z y
13 11 12 mpan card A z card A y card A z y
14 ssel card A On z card A z On
15 ssel card A On y card A y On
16 14 15 anim12d card A On z card A y card A z On y On
17 11 16 ax-mp z card A y card A z On y On
18 ontri1 z On y On z y ¬ y z
19 17 18 syl z card A y card A z y ¬ y z
20 epel y E z y z
21 20 notbii ¬ y E z ¬ y z
22 19 21 bitr4di z card A y card A z y ¬ y E z
23 22 rgen2 z card A y card A z y ¬ y E z
24 r19.29r z card A y card A z y z card A y card A z y ¬ y E z z card A y card A z y y card A z y ¬ y E z
25 13 23 24 sylancl card A z card A y card A z y y card A z y ¬ y E z
26 r19.26 y card A z y z y ¬ y E z y card A z y y card A z y ¬ y E z
27 bicom1 z y ¬ y E z ¬ y E z z y
28 27 biimparc z y z y ¬ y E z ¬ y E z
29 28 ralimi y card A z y z y ¬ y E z y card A ¬ y E z
30 26 29 sylbir y card A z y y card A z y ¬ y E z y card A ¬ y E z
31 30 reximi z card A y card A z y y card A z y ¬ y E z z card A y card A ¬ y E z
32 25 31 syl card A z card A y card A ¬ y E z
33 32 adantl A dom card card A z card A y card A ¬ y E z
34 breq2 z = card x y E z y E card x
35 34 notbid z = card x ¬ y E z ¬ y E card x
36 35 ralbidv z = card x y card A ¬ y E z y card A ¬ y E card x
37 36 rexima card Fn dom card A dom card z card A y card A ¬ y E z x A y card A ¬ y E card x
38 4 37 mpan A dom card z card A y card A ¬ y E z x A y card A ¬ y E card x
39 38 adantr A dom card card A z card A y card A ¬ y E z x A y card A ¬ y E card x
40 33 39 mpbid A dom card card A x A y card A ¬ y E card x
41 fvex card x V
42 41 dfpred3 Pred E card A card x = y card A | y E card x
43 42 eqeq1i Pred E card A card x = y card A | y E card x =
44 rabeq0 y card A | y E card x = y card A ¬ y E card x
45 43 44 bitri Pred E card A card x = y card A ¬ y E card x
46 45 rexbii x A Pred E card A card x = x A y card A ¬ y E card x
47 40 46 sylibr A dom card card A x A Pred E card A card x =
48 9 47 syl A dom card A x A Pred E card A card x =
49 ssel2 A dom card x A x dom card
50 cardpred A dom card x dom card Pred E card A card x = card Pred A x
51 50 eqeq1d A dom card x dom card Pred E card A card x = card Pred A x =
52 predss Pred A x A
53 sstr Pred A x A A dom card Pred A x dom card
54 52 53 mpan A dom card Pred A x dom card
55 fnimaeq0 card Fn dom card Pred A x dom card card Pred A x = Pred A x =
56 4 54 55 sylancr A dom card card Pred A x = Pred A x =
57 56 adantr A dom card x dom card card Pred A x = Pred A x =
58 51 57 bitrd A dom card x dom card Pred E card A card x = Pred A x =
59 49 58 syldan A dom card x A Pred E card A card x = Pred A x =
60 59 rexbidva A dom card x A Pred E card A card x = x A Pred A x =
61 60 adantr A dom card A x A Pred E card A card x = x A Pred A x =
62 48 61 mpbid A dom card A x A Pred A x =