Metamath Proof Explorer


Theorem omass

Description: Multiplication of ordinal numbers is associative. Theorem 8.26 of TakeutiZaring p. 65. Theorem 4.4 of Schloeder p. 13. (Contributed by NM, 28-Dec-2004)

Ref Expression
Assertion omass AOnBOnCOnA𝑜B𝑜C=A𝑜B𝑜C

Proof

Step Hyp Ref Expression
1 oveq2 x=A𝑜B𝑜x=A𝑜B𝑜
2 oveq2 x=B𝑜x=B𝑜
3 2 oveq2d x=A𝑜B𝑜x=A𝑜B𝑜
4 1 3 eqeq12d x=A𝑜B𝑜x=A𝑜B𝑜xA𝑜B𝑜=A𝑜B𝑜
5 oveq2 x=yA𝑜B𝑜x=A𝑜B𝑜y
6 oveq2 x=yB𝑜x=B𝑜y
7 6 oveq2d x=yA𝑜B𝑜x=A𝑜B𝑜y
8 5 7 eqeq12d x=yA𝑜B𝑜x=A𝑜B𝑜xA𝑜B𝑜y=A𝑜B𝑜y
9 oveq2 x=sucyA𝑜B𝑜x=A𝑜B𝑜sucy
10 oveq2 x=sucyB𝑜x=B𝑜sucy
11 10 oveq2d x=sucyA𝑜B𝑜x=A𝑜B𝑜sucy
12 9 11 eqeq12d x=sucyA𝑜B𝑜x=A𝑜B𝑜xA𝑜B𝑜sucy=A𝑜B𝑜sucy
13 oveq2 x=CA𝑜B𝑜x=A𝑜B𝑜C
14 oveq2 x=CB𝑜x=B𝑜C
15 14 oveq2d x=CA𝑜B𝑜x=A𝑜B𝑜C
16 13 15 eqeq12d x=CA𝑜B𝑜x=A𝑜B𝑜xA𝑜B𝑜C=A𝑜B𝑜C
17 omcl AOnBOnA𝑜BOn
18 om0 A𝑜BOnA𝑜B𝑜=
19 17 18 syl AOnBOnA𝑜B𝑜=
20 om0 BOnB𝑜=
21 20 oveq2d BOnA𝑜B𝑜=A𝑜
22 om0 AOnA𝑜=
23 21 22 sylan9eqr AOnBOnA𝑜B𝑜=
24 19 23 eqtr4d AOnBOnA𝑜B𝑜=A𝑜B𝑜
25 oveq1 A𝑜B𝑜y=A𝑜B𝑜yA𝑜B𝑜y+𝑜A𝑜B=A𝑜B𝑜y+𝑜A𝑜B
26 omsuc A𝑜BOnyOnA𝑜B𝑜sucy=A𝑜B𝑜y+𝑜A𝑜B
27 17 26 stoic3 AOnBOnyOnA𝑜B𝑜sucy=A𝑜B𝑜y+𝑜A𝑜B
28 omsuc BOnyOnB𝑜sucy=B𝑜y+𝑜B
29 28 3adant1 AOnBOnyOnB𝑜sucy=B𝑜y+𝑜B
30 29 oveq2d AOnBOnyOnA𝑜B𝑜sucy=A𝑜B𝑜y+𝑜B
31 omcl BOnyOnB𝑜yOn
32 odi AOnB𝑜yOnBOnA𝑜B𝑜y+𝑜B=A𝑜B𝑜y+𝑜A𝑜B
33 31 32 syl3an2 AOnBOnyOnBOnA𝑜B𝑜y+𝑜B=A𝑜B𝑜y+𝑜A𝑜B
34 33 3exp AOnBOnyOnBOnA𝑜B𝑜y+𝑜B=A𝑜B𝑜y+𝑜A𝑜B
35 34 expd AOnBOnyOnBOnA𝑜B𝑜y+𝑜B=A𝑜B𝑜y+𝑜A𝑜B
36 35 com34 AOnBOnBOnyOnA𝑜B𝑜y+𝑜B=A𝑜B𝑜y+𝑜A𝑜B
37 36 pm2.43d AOnBOnyOnA𝑜B𝑜y+𝑜B=A𝑜B𝑜y+𝑜A𝑜B
38 37 3imp AOnBOnyOnA𝑜B𝑜y+𝑜B=A𝑜B𝑜y+𝑜A𝑜B
39 30 38 eqtrd AOnBOnyOnA𝑜B𝑜sucy=A𝑜B𝑜y+𝑜A𝑜B
40 27 39 eqeq12d AOnBOnyOnA𝑜B𝑜sucy=A𝑜B𝑜sucyA𝑜B𝑜y+𝑜A𝑜B=A𝑜B𝑜y+𝑜A𝑜B
41 25 40 imbitrrid AOnBOnyOnA𝑜B𝑜y=A𝑜B𝑜yA𝑜B𝑜sucy=A𝑜B𝑜sucy
42 41 3exp AOnBOnyOnA𝑜B𝑜y=A𝑜B𝑜yA𝑜B𝑜sucy=A𝑜B𝑜sucy
43 42 com3r yOnAOnBOnA𝑜B𝑜y=A𝑜B𝑜yA𝑜B𝑜sucy=A𝑜B𝑜sucy
44 43 impd yOnAOnBOnA𝑜B𝑜y=A𝑜B𝑜yA𝑜B𝑜sucy=A𝑜B𝑜sucy
45 17 ancoms BOnAOnA𝑜BOn
46 vex xV
47 omlim A𝑜BOnxVLimxA𝑜B𝑜x=yxA𝑜B𝑜y
48 46 47 mpanr1 A𝑜BOnLimxA𝑜B𝑜x=yxA𝑜B𝑜y
49 45 48 sylan BOnAOnLimxA𝑜B𝑜x=yxA𝑜B𝑜y
50 49 an32s BOnLimxAOnA𝑜B𝑜x=yxA𝑜B𝑜y
51 50 ad2antrr BOnLimxAOnByxA𝑜B𝑜y=A𝑜B𝑜yA𝑜B𝑜x=yxA𝑜B𝑜y
52 iuneq2 yxA𝑜B𝑜y=A𝑜B𝑜yyxA𝑜B𝑜y=yxA𝑜B𝑜y
53 limelon xVLimxxOn
54 46 53 mpan LimxxOn
55 54 anim1i LimxBOnxOnBOn
56 55 ancoms BOnLimxxOnBOn
57 omordi xOnBOnByxB𝑜yB𝑜x
58 56 57 sylan BOnLimxByxB𝑜yB𝑜x
59 ssid A𝑜B𝑜yA𝑜B𝑜y
60 oveq2 z=B𝑜yA𝑜z=A𝑜B𝑜y
61 60 sseq2d z=B𝑜yA𝑜B𝑜yA𝑜zA𝑜B𝑜yA𝑜B𝑜y
62 61 rspcev B𝑜yB𝑜xA𝑜B𝑜yA𝑜B𝑜yzB𝑜xA𝑜B𝑜yA𝑜z
63 59 62 mpan2 B𝑜yB𝑜xzB𝑜xA𝑜B𝑜yA𝑜z
64 58 63 syl6 BOnLimxByxzB𝑜xA𝑜B𝑜yA𝑜z
65 64 ralrimiv BOnLimxByxzB𝑜xA𝑜B𝑜yA𝑜z
66 iunss2 yxzB𝑜xA𝑜B𝑜yA𝑜zyxA𝑜B𝑜yzB𝑜xA𝑜z
67 65 66 syl BOnLimxByxA𝑜B𝑜yzB𝑜xA𝑜z
68 67 adantlr BOnLimxAOnByxA𝑜B𝑜yzB𝑜xA𝑜z
69 omcl BOnxOnB𝑜xOn
70 54 69 sylan2 BOnLimxB𝑜xOn
71 onelon B𝑜xOnzB𝑜xzOn
72 70 71 sylan BOnLimxzB𝑜xzOn
73 72 adantlr BOnLimxAOnzB𝑜xzOn
74 omordlim BOnxVLimxzB𝑜xyxzB𝑜y
75 74 ex BOnxVLimxzB𝑜xyxzB𝑜y
76 46 75 mpanr1 BOnLimxzB𝑜xyxzB𝑜y
77 76 ad2antlr zOnBOnLimxAOnzB𝑜xyxzB𝑜y
78 onelon xOnyxyOn
79 54 78 sylan LimxyxyOn
80 79 31 sylan2 BOnLimxyxB𝑜yOn
81 onelss B𝑜yOnzB𝑜yzB𝑜y
82 81 3ad2ant2 zOnB𝑜yOnAOnzB𝑜yzB𝑜y
83 omwordi zOnB𝑜yOnAOnzB𝑜yA𝑜zA𝑜B𝑜y
84 82 83 syld zOnB𝑜yOnAOnzB𝑜yA𝑜zA𝑜B𝑜y
85 84 3exp zOnB𝑜yOnAOnzB𝑜yA𝑜zA𝑜B𝑜y
86 80 85 syl5 zOnBOnLimxyxAOnzB𝑜yA𝑜zA𝑜B𝑜y
87 86 exp4d zOnBOnLimxyxAOnzB𝑜yA𝑜zA𝑜B𝑜y
88 87 imp32 zOnBOnLimxyxAOnzB𝑜yA𝑜zA𝑜B𝑜y
89 88 com23 zOnBOnLimxAOnyxzB𝑜yA𝑜zA𝑜B𝑜y
90 89 imp zOnBOnLimxAOnyxzB𝑜yA𝑜zA𝑜B𝑜y
91 90 reximdvai zOnBOnLimxAOnyxzB𝑜yyxA𝑜zA𝑜B𝑜y
92 77 91 syld zOnBOnLimxAOnzB𝑜xyxA𝑜zA𝑜B𝑜y
93 92 exp31 zOnBOnLimxAOnzB𝑜xyxA𝑜zA𝑜B𝑜y
94 93 imp4c zOnBOnLimxAOnzB𝑜xyxA𝑜zA𝑜B𝑜y
95 73 94 mpcom BOnLimxAOnzB𝑜xyxA𝑜zA𝑜B𝑜y
96 95 ralrimiva BOnLimxAOnzB𝑜xyxA𝑜zA𝑜B𝑜y
97 iunss2 zB𝑜xyxA𝑜zA𝑜B𝑜yzB𝑜xA𝑜zyxA𝑜B𝑜y
98 96 97 syl BOnLimxAOnzB𝑜xA𝑜zyxA𝑜B𝑜y
99 98 adantr BOnLimxAOnBzB𝑜xA𝑜zyxA𝑜B𝑜y
100 68 99 eqssd BOnLimxAOnByxA𝑜B𝑜y=zB𝑜xA𝑜z
101 omlimcl BOnxVLimxBLimB𝑜x
102 46 101 mpanlr1 BOnLimxBLimB𝑜x
103 ovex B𝑜xV
104 omlim AOnB𝑜xVLimB𝑜xA𝑜B𝑜x=zB𝑜xA𝑜z
105 103 104 mpanr1 AOnLimB𝑜xA𝑜B𝑜x=zB𝑜xA𝑜z
106 102 105 sylan2 AOnBOnLimxBA𝑜B𝑜x=zB𝑜xA𝑜z
107 106 ancoms BOnLimxBAOnA𝑜B𝑜x=zB𝑜xA𝑜z
108 107 an32s BOnLimxAOnBA𝑜B𝑜x=zB𝑜xA𝑜z
109 100 108 eqtr4d BOnLimxAOnByxA𝑜B𝑜y=A𝑜B𝑜x
110 52 109 sylan9eqr BOnLimxAOnByxA𝑜B𝑜y=A𝑜B𝑜yyxA𝑜B𝑜y=A𝑜B𝑜x
111 51 110 eqtrd BOnLimxAOnByxA𝑜B𝑜y=A𝑜B𝑜yA𝑜B𝑜x=A𝑜B𝑜x
112 111 exp31 BOnLimxAOnByxA𝑜B𝑜y=A𝑜B𝑜yA𝑜B𝑜x=A𝑜B𝑜x
113 eloni BOnOrdB
114 ord0eln0 OrdBBB
115 114 necon2bbid OrdBB=¬B
116 113 115 syl BOnB=¬B
117 116 ad2antrr BOnLimxAOnB=¬B
118 oveq2 B=A𝑜B=A𝑜
119 118 22 sylan9eqr AOnB=A𝑜B=
120 119 oveq1d AOnB=A𝑜B𝑜x=𝑜x
121 om0r xOn𝑜x=
122 120 121 sylan9eqr xOnAOnB=A𝑜B𝑜x=
123 122 anassrs xOnAOnB=A𝑜B𝑜x=
124 oveq1 B=B𝑜x=𝑜x
125 124 121 sylan9eqr xOnB=B𝑜x=
126 125 oveq2d xOnB=A𝑜B𝑜x=A𝑜
127 126 22 sylan9eq xOnB=AOnA𝑜B𝑜x=
128 127 an32s xOnAOnB=A𝑜B𝑜x=
129 123 128 eqtr4d xOnAOnB=A𝑜B𝑜x=A𝑜B𝑜x
130 129 ex xOnAOnB=A𝑜B𝑜x=A𝑜B𝑜x
131 54 130 sylan LimxAOnB=A𝑜B𝑜x=A𝑜B𝑜x
132 131 adantll BOnLimxAOnB=A𝑜B𝑜x=A𝑜B𝑜x
133 117 132 sylbird BOnLimxAOn¬BA𝑜B𝑜x=A𝑜B𝑜x
134 133 a1dd BOnLimxAOn¬ByxA𝑜B𝑜y=A𝑜B𝑜yA𝑜B𝑜x=A𝑜B𝑜x
135 112 134 pm2.61d BOnLimxAOnyxA𝑜B𝑜y=A𝑜B𝑜yA𝑜B𝑜x=A𝑜B𝑜x
136 135 exp31 BOnLimxAOnyxA𝑜B𝑜y=A𝑜B𝑜yA𝑜B𝑜x=A𝑜B𝑜x
137 136 com3l LimxAOnBOnyxA𝑜B𝑜y=A𝑜B𝑜yA𝑜B𝑜x=A𝑜B𝑜x
138 137 impd LimxAOnBOnyxA𝑜B𝑜y=A𝑜B𝑜yA𝑜B𝑜x=A𝑜B𝑜x
139 4 8 12 16 24 44 138 tfinds3 COnAOnBOnA𝑜B𝑜C=A𝑜B𝑜C
140 139 expd COnAOnBOnA𝑜B𝑜C=A𝑜B𝑜C
141 140 com3l AOnBOnCOnA𝑜B𝑜C=A𝑜B𝑜C
142 141 3imp AOnBOnCOnA𝑜B𝑜C=A𝑜B𝑜C