Step |
Hyp |
Ref |
Expression |
1 |
|
omeunle.o |
|
2 |
|
omeunle.x |
|
3 |
|
omeunle.a |
|
4 |
|
omeunle.b |
|
5 |
1 2
|
unidmex |
|
6 |
|
ssexg |
|
7 |
3 5 6
|
syl2anc |
|
8 |
|
ssexg |
|
9 |
4 5 8
|
syl2anc |
|
10 |
|
uniprg |
|
11 |
7 9 10
|
syl2anc |
|
12 |
11
|
eqcomd |
|
13 |
12
|
fveq2d |
|
14 |
|
iccssxr |
|
15 |
3 4
|
unssd |
|
16 |
11 15
|
eqsstrd |
|
17 |
1 2 16
|
omecl |
|
18 |
14 17
|
sselid |
|
19 |
|
prfi |
|
20 |
19
|
elexi |
|
21 |
20
|
a1i |
|
22 |
1 2
|
omef |
|
23 |
|
elpwg |
|
24 |
7 23
|
syl |
|
25 |
3 24
|
mpbird |
|
26 |
|
elpwg |
|
27 |
9 26
|
syl |
|
28 |
4 27
|
mpbird |
|
29 |
25 28
|
jca |
|
30 |
|
prssg |
|
31 |
7 9 30
|
syl2anc |
|
32 |
29 31
|
mpbid |
|
33 |
22 32
|
fssresd |
|
34 |
21 33
|
sge0xrcl |
|
35 |
1 2 3
|
omecl |
|
36 |
14 35
|
sselid |
|
37 |
1 2 4
|
omecl |
|
38 |
14 37
|
sselid |
|
39 |
36 38
|
xaddcld |
|
40 |
|
isfinite |
|
41 |
40
|
biimpi |
|
42 |
|
sdomdom |
|
43 |
41 42
|
syl |
|
44 |
19 43
|
ax-mp |
|
45 |
44
|
a1i |
|
46 |
1 2 32 45
|
omeunile |
|
47 |
22 32
|
feqresmpt |
|
48 |
47
|
fveq2d |
|
49 |
|
fveq2 |
|
50 |
|
fveq2 |
|
51 |
7 9 35 37 49 50
|
sge0prle |
|
52 |
48 51
|
eqbrtrd |
|
53 |
18 34 39 46 52
|
xrletrd |
|
54 |
13 53
|
eqbrtrd |
|