Metamath Proof Explorer


Theorem omeunle

Description: The outer measure of the union of two sets is less than or equal to the sum of the measures, Remark 113B (c) of Fremlin1 p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses omeunle.o φ O OutMeas
omeunle.x X = dom O
omeunle.a φ A X
omeunle.b φ B X
Assertion omeunle φ O A B O A + 𝑒 O B

Proof

Step Hyp Ref Expression
1 omeunle.o φ O OutMeas
2 omeunle.x X = dom O
3 omeunle.a φ A X
4 omeunle.b φ B X
5 1 2 unidmex φ X V
6 ssexg A X X V A V
7 3 5 6 syl2anc φ A V
8 ssexg B X X V B V
9 4 5 8 syl2anc φ B V
10 uniprg A V B V A B = A B
11 7 9 10 syl2anc φ A B = A B
12 11 eqcomd φ A B = A B
13 12 fveq2d φ O A B = O A B
14 iccssxr 0 +∞ *
15 3 4 unssd φ A B X
16 11 15 eqsstrd φ A B X
17 1 2 16 omecl φ O A B 0 +∞
18 14 17 sselid φ O A B *
19 prfi A B Fin
20 19 elexi A B V
21 20 a1i φ A B V
22 1 2 omef φ O : 𝒫 X 0 +∞
23 elpwg A V A 𝒫 X A X
24 7 23 syl φ A 𝒫 X A X
25 3 24 mpbird φ A 𝒫 X
26 elpwg B V B 𝒫 X B X
27 9 26 syl φ B 𝒫 X B X
28 4 27 mpbird φ B 𝒫 X
29 25 28 jca φ A 𝒫 X B 𝒫 X
30 prssg A V B V A 𝒫 X B 𝒫 X A B 𝒫 X
31 7 9 30 syl2anc φ A 𝒫 X B 𝒫 X A B 𝒫 X
32 29 31 mpbid φ A B 𝒫 X
33 22 32 fssresd φ O A B : A B 0 +∞
34 21 33 sge0xrcl φ sum^ O A B *
35 1 2 3 omecl φ O A 0 +∞
36 14 35 sselid φ O A *
37 1 2 4 omecl φ O B 0 +∞
38 14 37 sselid φ O B *
39 36 38 xaddcld φ O A + 𝑒 O B *
40 isfinite A B Fin A B ω
41 40 biimpi A B Fin A B ω
42 sdomdom A B ω A B ω
43 41 42 syl A B Fin A B ω
44 19 43 ax-mp A B ω
45 44 a1i φ A B ω
46 1 2 32 45 omeunile φ O A B sum^ O A B
47 22 32 feqresmpt φ O A B = k A B O k
48 47 fveq2d φ sum^ O A B = sum^ k A B O k
49 fveq2 k = A O k = O A
50 fveq2 k = B O k = O B
51 7 9 35 37 49 50 sge0prle φ sum^ k A B O k O A + 𝑒 O B
52 48 51 eqbrtrd φ sum^ O A B O A + 𝑒 O B
53 18 34 39 46 52 xrletrd φ O A B O A + 𝑒 O B
54 13 53 eqbrtrd φ O A B O A + 𝑒 O B