Description: In a commutative ordered monoid, the ordering is compatible with group power. (Contributed by Thierry Arnoux, 30-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | omndmul.0 | |
|
omndmul.1 | |
||
omndmul.2 | |
||
omndmul.o | |
||
omndmul.c | |
||
omndmul.x | |
||
omndmul.y | |
||
omndmul.n | |
||
omndmul.l | |
||
Assertion | omndmul | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omndmul.0 | |
|
2 | omndmul.1 | |
|
3 | omndmul.2 | |
|
4 | omndmul.o | |
|
5 | omndmul.c | |
|
6 | omndmul.x | |
|
7 | omndmul.y | |
|
8 | omndmul.n | |
|
9 | omndmul.l | |
|
10 | oveq1 | |
|
11 | oveq1 | |
|
12 | 10 11 | breq12d | |
13 | oveq1 | |
|
14 | oveq1 | |
|
15 | 13 14 | breq12d | |
16 | oveq1 | |
|
17 | oveq1 | |
|
18 | 16 17 | breq12d | |
19 | oveq1 | |
|
20 | oveq1 | |
|
21 | 19 20 | breq12d | |
22 | omndtos | |
|
23 | tospos | |
|
24 | 4 22 23 | 3syl | |
25 | eqid | |
|
26 | 1 25 3 | mulg0 | |
27 | 7 26 | syl | |
28 | omndmnd | |
|
29 | 1 25 | mndidcl | |
30 | 4 28 29 | 3syl | |
31 | 27 30 | eqeltrd | |
32 | 1 2 | posref | |
33 | 24 31 32 | syl2anc | |
34 | 1 25 3 | mulg0 | |
35 | 34 | adantr | |
36 | 26 | adantl | |
37 | 35 36 | eqtr4d | |
38 | 37 | breq1d | |
39 | 6 7 38 | syl2anc | |
40 | 33 39 | mpbird | |
41 | eqid | |
|
42 | 4 | ad2antrr | |
43 | 7 | ad2antrr | |
44 | 42 28 | syl | |
45 | simplr | |
|
46 | 6 | ad2antrr | |
47 | 1 3 44 45 46 | mulgnn0cld | |
48 | 1 3 44 45 43 | mulgnn0cld | |
49 | simpr | |
|
50 | 9 | ad2antrr | |
51 | 5 | ad2antrr | |
52 | 1 2 41 42 43 47 46 48 49 50 51 | omndadd2d | |
53 | 1 3 41 | mulgnn0p1 | |
54 | 44 45 46 53 | syl3anc | |
55 | 1 3 41 | mulgnn0p1 | |
56 | 44 45 43 55 | syl3anc | |
57 | 52 54 56 | 3brtr4d | |
58 | 12 15 18 21 40 57 | nn0indd | |
59 | 8 58 | mpdan | |