Metamath Proof Explorer


Theorem omndmul

Description: In a commutative ordered monoid, the ordering is compatible with group power. (Contributed by Thierry Arnoux, 30-Jan-2018)

Ref Expression
Hypotheses omndmul.0 B=BaseM
omndmul.1 ˙=M
omndmul.2 ·˙=M
omndmul.o φMoMnd
omndmul.c φMCMnd
omndmul.x φXB
omndmul.y φYB
omndmul.n φN0
omndmul.l φX˙Y
Assertion omndmul φN·˙X˙N·˙Y

Proof

Step Hyp Ref Expression
1 omndmul.0 B=BaseM
2 omndmul.1 ˙=M
3 omndmul.2 ·˙=M
4 omndmul.o φMoMnd
5 omndmul.c φMCMnd
6 omndmul.x φXB
7 omndmul.y φYB
8 omndmul.n φN0
9 omndmul.l φX˙Y
10 oveq1 m=0m·˙X=0·˙X
11 oveq1 m=0m·˙Y=0·˙Y
12 10 11 breq12d m=0m·˙X˙m·˙Y0·˙X˙0·˙Y
13 oveq1 m=nm·˙X=n·˙X
14 oveq1 m=nm·˙Y=n·˙Y
15 13 14 breq12d m=nm·˙X˙m·˙Yn·˙X˙n·˙Y
16 oveq1 m=n+1m·˙X=n+1·˙X
17 oveq1 m=n+1m·˙Y=n+1·˙Y
18 16 17 breq12d m=n+1m·˙X˙m·˙Yn+1·˙X˙n+1·˙Y
19 oveq1 m=Nm·˙X=N·˙X
20 oveq1 m=Nm·˙Y=N·˙Y
21 19 20 breq12d m=Nm·˙X˙m·˙YN·˙X˙N·˙Y
22 omndtos MoMndMToset
23 tospos MTosetMPoset
24 4 22 23 3syl φMPoset
25 eqid 0M=0M
26 1 25 3 mulg0 YB0·˙Y=0M
27 7 26 syl φ0·˙Y=0M
28 omndmnd MoMndMMnd
29 1 25 mndidcl MMnd0MB
30 4 28 29 3syl φ0MB
31 27 30 eqeltrd φ0·˙YB
32 1 2 posref MPoset0·˙YB0·˙Y˙0·˙Y
33 24 31 32 syl2anc φ0·˙Y˙0·˙Y
34 1 25 3 mulg0 XB0·˙X=0M
35 34 adantr XBYB0·˙X=0M
36 26 adantl XBYB0·˙Y=0M
37 35 36 eqtr4d XBYB0·˙X=0·˙Y
38 37 breq1d XBYB0·˙X˙0·˙Y0·˙Y˙0·˙Y
39 6 7 38 syl2anc φ0·˙X˙0·˙Y0·˙Y˙0·˙Y
40 33 39 mpbird φ0·˙X˙0·˙Y
41 eqid +M=+M
42 4 ad2antrr φn0n·˙X˙n·˙YMoMnd
43 7 ad2antrr φn0n·˙X˙n·˙YYB
44 42 28 syl φn0n·˙X˙n·˙YMMnd
45 simplr φn0n·˙X˙n·˙Yn0
46 6 ad2antrr φn0n·˙X˙n·˙YXB
47 1 3 44 45 46 mulgnn0cld φn0n·˙X˙n·˙Yn·˙XB
48 1 3 44 45 43 mulgnn0cld φn0n·˙X˙n·˙Yn·˙YB
49 simpr φn0n·˙X˙n·˙Yn·˙X˙n·˙Y
50 9 ad2antrr φn0n·˙X˙n·˙YX˙Y
51 5 ad2antrr φn0n·˙X˙n·˙YMCMnd
52 1 2 41 42 43 47 46 48 49 50 51 omndadd2d φn0n·˙X˙n·˙Yn·˙X+MX˙n·˙Y+MY
53 1 3 41 mulgnn0p1 MMndn0XBn+1·˙X=n·˙X+MX
54 44 45 46 53 syl3anc φn0n·˙X˙n·˙Yn+1·˙X=n·˙X+MX
55 1 3 41 mulgnn0p1 MMndn0YBn+1·˙Y=n·˙Y+MY
56 44 45 43 55 syl3anc φn0n·˙X˙n·˙Yn+1·˙Y=n·˙Y+MY
57 52 54 56 3brtr4d φn0n·˙X˙n·˙Yn+1·˙X˙n+1·˙Y
58 12 15 18 21 40 57 nn0indd φN0N·˙X˙N·˙Y
59 8 58 mpdan φN·˙X˙N·˙Y