| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reex |
|
| 2 |
|
elssuni |
|
| 3 |
|
uniretop |
|
| 4 |
2 3
|
sseqtrrdi |
|
| 5 |
|
ssdomg |
|
| 6 |
1 4 5
|
mpsyl |
|
| 7 |
|
rpnnen |
|
| 8 |
|
domentr |
|
| 9 |
6 7 8
|
sylancl |
|
| 10 |
|
n0 |
|
| 11 |
4
|
sselda |
|
| 12 |
|
rpnnen2 |
|
| 13 |
|
rphalfcl |
|
| 14 |
13
|
rpred |
|
| 15 |
|
resubcl |
|
| 16 |
14 15
|
sylan2 |
|
| 17 |
|
readdcl |
|
| 18 |
14 17
|
sylan2 |
|
| 19 |
|
simpl |
|
| 20 |
|
ltsubrp |
|
| 21 |
13 20
|
sylan2 |
|
| 22 |
|
ltaddrp |
|
| 23 |
13 22
|
sylan2 |
|
| 24 |
16 19 18 21 23
|
lttrd |
|
| 25 |
|
iccen |
|
| 26 |
16 18 24 25
|
syl3anc |
|
| 27 |
|
domentr |
|
| 28 |
12 26 27
|
sylancr |
|
| 29 |
|
ovex |
|
| 30 |
|
rpre |
|
| 31 |
|
resubcl |
|
| 32 |
30 31
|
sylan2 |
|
| 33 |
32
|
rexrd |
|
| 34 |
|
readdcl |
|
| 35 |
30 34
|
sylan2 |
|
| 36 |
35
|
rexrd |
|
| 37 |
19
|
recnd |
|
| 38 |
14
|
adantl |
|
| 39 |
38
|
recnd |
|
| 40 |
37 39 39
|
subsub4d |
|
| 41 |
30
|
adantl |
|
| 42 |
41
|
recnd |
|
| 43 |
42
|
2halvesd |
|
| 44 |
43
|
oveq2d |
|
| 45 |
40 44
|
eqtrd |
|
| 46 |
13
|
adantl |
|
| 47 |
16 46
|
ltsubrpd |
|
| 48 |
45 47
|
eqbrtrrd |
|
| 49 |
18 46
|
ltaddrpd |
|
| 50 |
37 39 39
|
addassd |
|
| 51 |
43
|
oveq2d |
|
| 52 |
50 51
|
eqtrd |
|
| 53 |
49 52
|
breqtrd |
|
| 54 |
|
iccssioo |
|
| 55 |
33 36 48 53 54
|
syl22anc |
|
| 56 |
|
ssdomg |
|
| 57 |
29 55 56
|
mpsyl |
|
| 58 |
|
domtr |
|
| 59 |
28 57 58
|
syl2anc |
|
| 60 |
|
eqid |
|
| 61 |
60
|
bl2ioo |
|
| 62 |
30 61
|
sylan2 |
|
| 63 |
59 62
|
breqtrrd |
|
| 64 |
11 63
|
sylan |
|
| 65 |
|
simplll |
|
| 66 |
|
simpr |
|
| 67 |
|
ssdomg |
|
| 68 |
65 66 67
|
sylc |
|
| 69 |
|
domtr |
|
| 70 |
64 68 69
|
syl2an2r |
|
| 71 |
|
eqid |
|
| 72 |
60 71
|
tgioo |
|
| 73 |
72
|
eleq2i |
|
| 74 |
60
|
rexmet |
|
| 75 |
71
|
mopni2 |
|
| 76 |
74 75
|
mp3an1 |
|
| 77 |
73 76
|
sylanb |
|
| 78 |
70 77
|
r19.29a |
|
| 79 |
78
|
ex |
|
| 80 |
79
|
exlimdv |
|
| 81 |
10 80
|
biimtrid |
|
| 82 |
81
|
imp |
|
| 83 |
|
sbth |
|
| 84 |
9 82 83
|
syl2an2r |
|